An up-scaled biotechnological approach for phosphorus-depleted rye bran as animal feed
Niklas Widderich , Johanna Stotz , Florian Lohkamp , Christian Visscher , Ulrich Schwaneberg , Andreas Liese , Paul Bubenheim , Anna Joëlle Ruff
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 49
An up-scaled biotechnological approach for phosphorus-depleted rye bran as animal feed
Side streams from the milling industry offer excellent nutritional properties for animal feed; yet their use is constrained by the elevated phosphorus (P) content, mainly in the form of phytate. Biotechnological P recovery fosters sustainable P management, transforming these streams into P-depleted animal feed through enzymatic hydrolysis. The enzymatic P mobilization not only enables P recovery from milling by-products but also supports the valorization of these streams into P-depleted animal feeds. Our study presents the scalability and applicability of the process and characterizes the resulting P-depleted rye bran as animal feed component. Batch mode investigations were conducted to mobilize P from 100 g to 37.1 kg of rye bran using bioreactors up to 400 L. P reductions of 89% to 92% (reducing from 12.7 gP/kg to 1.41–1.28 gP/kg) were achieved. In addition, High Performance Ion Chromatography (HPIC) analysis showed complete depletion of phytate. The successful recovery of the enzymatically mobilized P from the process wastewater by precipitation as struvite and calcium hydrogen phosphate is presented as well, achieving up to 99% removal efficiency. Our study demonstrates a versatile process that is easily adaptable, allowing for a seamless implementation on a larger scale.
Valorization of plant byproducts / Phosphorus reduced animal feed / Phosphorus mobilization / Up-scaling / Circular phosphorus bioeconomy / Phosphorus recovery / Sustainability
| [1] |
|
| [2] |
DLG-Merkblatt (2021): Berücksichtigung N- und P-reduzierter Fütterungsverfahren bei den Nährstoffausscheidungen von Masthähnchen, Jung- und Legehennen. 457. |
| [3] |
|
| [4] |
Düngemittelverordnung: Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis: DüV vom 26. Mai 2017 (BGBl. I S. 1305), geändert durch Artikel 1 der Verordnung vom 28. April 2020 (BGBl. I S. 846). 2017 |
| [5] |
|
| [6] |
|
| [7] |
Gesellschaft für Ernährungsphysiologie. Empfehlungen zur Energie-und Nährstoffversorgung beim Schwein. Ausschuss für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie, 2006. |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
DLG Merkblatt (2019): Leitfaden zur nachvollziehbaren Umsetzung stark N-/P-reduzierter Fütterungsverfahren bei Schweinen. 418. |
| [23] |
|
| [24] |
|
| [25] |
Matissek R, Schnepel F-M, Steiner G (1992) Lebensmittelanalytik: Grundzüge, Methoden, Anwendungen, 2., korr. Aufl.; Springer: Berlin, Heidelberg. ISBN 0387138358 |
| [26] |
Naumann C, Bassler R. Methoden der landwirtschaftlichen Forschungs- und Untersuchungsanstalt: Methodenbuch. Band III, Die chemische Untersuchung von Futtermitteln. |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
Oates K, Borba DB, Rohrer J. Determination of inositol phosphates in dried distillers grains with solubles. Application Note 1070. Thermo Fisher Scientific Inc. 2014 |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
Sommerfeld V, Rodehutscord M (2019) Phosphoreffizienz in der Nutztierernährung, 52nd ed.; agrar spectrum |
| [37] |
Staudacher W (2014) Potthast, V. DLG-Futterwerttabellen-Schweine: Deutsche Landwirtschaftliche-Gesellschaft; DLG-Verlag. |
| [38] |
|
| [39] |
Taube F, Bach M, Breuer L, Ewert F, Frohrer N, Leineweber P, Müller T, Wiggering H (2020) Novellierung der Stoffstrombilanzverordnung Stickstoff- und Phosphor-Überschüsse nachhaltig begrenzen. Fachliche Stellungnahme zur Novellierung der Stoffstrombilanzverordnung |
| [40] |
|
/
| 〈 |
|
〉 |