An up-scaled biotechnological approach for phosphorus-depleted rye bran as animal feed

Niklas Widderich , Johanna Stotz , Florian Lohkamp , Christian Visscher , Ulrich Schwaneberg , Andreas Liese , Paul Bubenheim , Anna Joëlle Ruff

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 49

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 49 DOI: 10.1186/s40643-024-00765-5
Research

An up-scaled biotechnological approach for phosphorus-depleted rye bran as animal feed

Author information +
History +
PDF

Abstract

Side streams from the milling industry offer excellent nutritional properties for animal feed; yet their use is constrained by the elevated phosphorus (P) content, mainly in the form of phytate. Biotechnological P recovery fosters sustainable P management, transforming these streams into P-depleted animal feed through enzymatic hydrolysis. The enzymatic P mobilization not only enables P recovery from milling by-products but also supports the valorization of these streams into P-depleted animal feeds. Our study presents the scalability and applicability of the process and characterizes the resulting P-depleted rye bran as animal feed component. Batch mode investigations were conducted to mobilize P from 100 g to 37.1 kg of rye bran using bioreactors up to 400 L. P reductions of 89% to 92% (reducing from 12.7 gP/kg to 1.41–1.28 gP/kg) were achieved. In addition, High Performance Ion Chromatography (HPIC) analysis showed complete depletion of phytate. The successful recovery of the enzymatically mobilized P from the process wastewater by precipitation as struvite and calcium hydrogen phosphate is presented as well, achieving up to 99% removal efficiency. Our study demonstrates a versatile process that is easily adaptable, allowing for a seamless implementation on a larger scale.

Keywords

Valorization of plant byproducts / Phosphorus reduced animal feed / Phosphorus mobilization / Up-scaling / Circular phosphorus bioeconomy / Phosphorus recovery / Sustainability

Cite this article

Download citation ▾
Niklas Widderich, Johanna Stotz, Florian Lohkamp, Christian Visscher, Ulrich Schwaneberg, Andreas Liese, Paul Bubenheim, Anna Joëlle Ruff. An up-scaled biotechnological approach for phosphorus-depleted rye bran as animal feed. Bioresources and Bioprocessing, 2024, 11(1): 49 DOI:10.1186/s40643-024-00765-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arte E, Katina K, Holopainen-Mantila U, Nordlund E. Effect of hydrolyzing enzymes on wheat bran cell wall integrity and protein solubility. Cereal Chem J, 2016, 93: 162-171.

[2]

DLG-Merkblatt (2021): Berücksichtigung N- und P-reduzierter Fütterungsverfahren bei den Nährstoffausscheidungen von Masthähnchen, Jung- und Legehennen. 457.

[3]

Brijs K, Bleukx W, Delcour JA. Proteolytic activities in dormant rye (Secale cereale L.) grain. J Agric Food Chem, 1999, 47: 3572-3578.

[4]

Düngemittelverordnung: Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis: DüV vom 26. Mai 2017 (BGBl. I S. 1305), geändert durch Artikel 1 der Verordnung vom 28. April 2020 (BGBl. I S. 846). 2017

[5]

Eeckhout W, de Paepe M. Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Anim Feed Sci Technol, 1994, 47: 19-29.

[6]

Feizollahi E, Mirmahdi RS, Zoghi A, Zijlstra RT, Roopesh MS, Vasanthan T. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Res Int, 2021, 143.

[7]

Gesellschaft für Ernährungsphysiologie. Empfehlungen zur Energie-und Nährstoffversorgung beim Schwein. Ausschuss für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie, 2006.

[8]

González-Morales C, Fernández B, Molina FJ, Naranjo-Fernández D, Matamoros-Veloza A, Camargo-Valero MA. Influence of pH and temperature on struvite purity and recovery from anaerobic digestate. Sustainability, 2021, 13: 10730.

[9]

Greiner R, Konietzny U. Phytase for food application. Food Technol Biotechnol, 2006, 44: 125-140.

[10]

Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A. Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res, 2008, 36.

[11]

Herrmann R, Schwaneberg U. Phytase-based phosphorus recovery process for 20 distinct press cakes. Sustai Chem Eng, 2020, 8: 3913-3921.

[12]

Herrmann KR, Fees J, Christ JJ, Hofmann I, Block C, Herzberg D, Bröring S, Reckels B, Visscher C, Blank LM, . Biotechnological production of food-grade polyphosphate from deoiled seeds and bran. EFB Bioecon J, 2023, 3.

[13]

Hirvonen J, Liljavirta J, Saarinen MT, Lehtinen MJ, Ahonen I, Nurminen P. Effect of phytase on in vitro hydrolysis of phytate and the formation of myo-inositol phosphate esters in various feed materials. J Agric Food Chem, 2019, 67: 11396-11402.

[14]

Humer E, Schwarz C, Schedle K. Phytate in pig and poultry nutrition. J Anim Physiol Anim Nutr, 2015, 99: 605-625.

[15]

Hutnik N, Kozik A, Mazienczuk A, Piotrowski K, Wierzbowska B, Matynia A. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process. Water Res, 2013, 47: 3635-3643.

[16]

Infanzón B, Herrmann KR, Hofmann I, Willbold S, Ruff AJ, Schwaneberg U. Phytase blends for enhanced phosphorous mobilization of deoiled seeds. Enzyme Microb Technol, 2022, 153.

[17]

Jupp AR, Beijer S, Narain GC, Schipper W, Slootweg JC. Phosphorus recovery and recycling - closing the loop. Chem Soc Rev, 2021, 50: 87-101.

[18]

Katina K, Laitila A, Juvonen R, Liukkonen K-H, Kariluoto S, Piironen V, Landberg R, Aman P, Poutanen K. Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol, 2007, 24: 175-186.

[19]

Kwapinski W, Kolinovic I, Leahy JJ. Sewage sludge thermal treatment technologies with a focus on phosphorus recovery: a review. Waste Biomass Valor, 2021, 12: 5837-5852.

[20]

Labgairi K, Borji A, Kaddami M, Jourani A. Kinetic study of calcium phosphate precipitation in the system H3PO4-Ca(OH)2–H2O at 30°C. Int J Chem Eng, 2020, 2020: 1-9.

[21]

Laurikainen T, Härkönen H, Autio K, Poutanen K. Effects of enzymes in fibre-enriched baking. J Sci Food Agric, 1998, 76: 239-249.

[22]

DLG Merkblatt (2019): Leitfaden zur nachvollziehbaren Umsetzung stark N-/P-reduzierter Fütterungsverfahren bei Schweinen. 418.

[23]

Li B, Boiarkina I, Young B, Yu W. Quantification and mitigation of the negative impact of calcium on struvite purity. Adv Powder Technol, 2016, 27: 2354-2362.

[24]

Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H. Degradation of HMW glutenins during wheat sourdough fermentations. Cereal Chem, 2004, 81: 87-93.

[25]

Matissek R, Schnepel F-M, Steiner G (1992) Lebensmittelanalytik: Grundzüge, Methoden, Anwendungen, 2., korr. Aufl.; Springer: Berlin, Heidelberg. ISBN 0387138358

[26]

Naumann C, Bassler R. Methoden der landwirtschaftlichen Forschungs- und Untersuchungsanstalt: Methodenbuch. Band III, Die chemische Untersuchung von Futtermitteln.

[27]

Nguyen Quang B, Ta Hong D. Synthesis and characterization of feed-grade monocalcium phosphate Ca(H2PO4)2·H2O from oyster shell. J Chem, 2022, 2022: 1-7.

[28]

Nielsen PH, McIlroy SJ, Albertsen M, Nierychlo M. Re-evaluating the microbiology of the enhanced biological phosphorus removal process. Curr Opin Biotechnol, 2019, 57: 111-118.

[29]

Nyombaire G, Ng PK. Physicochemical properties of washed wheat bran. AJFST, 2022, 10: 89-94.

[30]

Oates K, Borba DB, Rohrer J. Determination of inositol phosphates in dried distillers grains with solubles. Application Note 1070. Thermo Fisher Scientific Inc. 2014

[31]

Petersson K, Nordlund E, Tornberg E, Eliasson A-C, Buchert J. Impact of cell wall-degrading enzymes on water-holding capacity and solubility of dietary fibre in rye and wheat bran. J Sci Food Agric, 2013, 93: 882-889.

[32]

Ragon M, Aumelas A, Chemardin P, Galvez S, Moulin G, Boze H. Complete hydrolysis of myo-inositol hexakisphosphate by a novel phytase from Debaryomyces castellii CBS 2923. Appl Microbiol Biotechnol, 2008, 78: 47-53.

[33]

Roberts PJ, Simmonds DH, Wootton M, Wrigley CW. Extraction of protein and solids from wheat bran. J Sci Food Agric, 1985, 36: 5-10.

[34]

Rosenfelder-Kuon P, Klein N, Zegowitz B, Schollenberger M, Kühn I, Thuringer L, Seifert J, Rodehutscord M. Phytate degradation cascade in pigs as affected by phytase supplementation and rapeseed cake inclusion in corn-soybean meal-based diets. J Anim Sci, 2020

[35]

Siciliano A, Limonti C, Curcio GM, Molinari R. Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability, 2020, 12: 7538.

[36]

Sommerfeld V, Rodehutscord M (2019) Phosphoreffizienz in der Nutztierernährung, 52nd ed.; agrar spectrum

[37]

Staudacher W (2014) Potthast, V. DLG-Futterwerttabellen-Schweine: Deutsche Landwirtschaftliche-Gesellschaft; DLG-Verlag.

[38]

Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B. Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome. Appl Microbiol Biotechnol, 2016, 100: 2225-2241.

[39]

Taube F, Bach M, Breuer L, Ewert F, Frohrer N, Leineweber P, Müller T, Wiggering H (2020) Novellierung der Stoffstrombilanzverordnung Stickstoff- und Phosphor-Überschüsse nachhaltig begrenzen. Fachliche Stellungnahme zur Novellierung der Stoffstrombilanzverordnung

[40]

Widderich N, Mayer N, Ruff AJ, Reckels B, Lohkamp F, Visscher C, Schwaneberg U, Kaltschmitt M, Liese A, Bubenheim P. Conditioning of feed material prior to feeding: approaches for a sustainable phosphorus utilization. Sustainability, 2022, 14: 3998.

Funding

Deutsche Bundesstiftung Umwelt(PhANG)

RWTH Aachen University (3131)

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/