Dynamic immobilization of bacterial cells on biofilm in a polyester nonwoven chemostat

Chao-Lei Zhang , Chao Wang , Yue-Sheng Dong , Ya-Qin Sun , Zhi-Long Xiu

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 17

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 17 DOI: 10.1186/s40643-024-00732-0
Research

Dynamic immobilization of bacterial cells on biofilm in a polyester nonwoven chemostat

Author information +
History +
PDF

Abstract

Cell immobilization plays an important role in biocatalysis for high-value products. It is necessary to maintain the viability of immobilized cells for bioconversion using viable cells as biocatalysts. In this study, a novel polyester nonwoven chemostat was designed for cell immobilization to investigate biofilm formation and the dynamic balance between adsorption and desorption of cells on polyester nonwoven. The polyester nonwoven was suitable for cell immobilization, and the cell numbers on the polyester nonwoven can reach 6.5 ± 0.38 log CFU/mL. After adding the polyester nonwoven to the chemostat, the fluctuation phenomenon of free bacterial cells occurred. The reason for this phenomenon was the balance between adsorption and desorption of bacterial cells on the polyester nonwoven. Bacterial cells could adhere to the surface of polyester nonwoven via secreting extracellular polymeric substances (EPS) to form biofilms. As the maturation of biofilms, some dead cells inside the biofilms can cause the detachment of biofilms. This process of continuous adsorption and desorption of cells can ensure that the polyester nonwoven chemostat has lasting biological activity.

Keywords

Cell immobilization / Biofilm / Adsorption/desorption / Extracellular polymeric substances

Cite this article

Download citation ▾
Chao-Lei Zhang, Chao Wang, Yue-Sheng Dong, Ya-Qin Sun, Zhi-Long Xiu. Dynamic immobilization of bacterial cells on biofilm in a polyester nonwoven chemostat. Bioresources and Bioprocessing, 2024, 11(1): 17 DOI:10.1186/s40643-024-00732-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aghaei H, Ghavi M, Hashemkhani G, Keshavarz M. Utilization of two modified layered doubled hydroxides as supports for immobilization of Candida rugosa lipase. Int J Biol Macromol, 2020, 162: 74-83.

[2]

Aghaei H, Yasinian A, Taghizadeh A. Covalent immobilization of lipase from C-andida rugose on epoxy-activated cloisite 30B as a new heterofunctional carrier and its application in the synthesis of banana flavor and production of biodiesel. Int J Biol Macromol, 2021, 178: 569-579.

[3]

Aghaei H, Mohammadbagheri Z, Hemasi A, Taghizadeh A. Efficient hydrolysi of starch by α-amylase immobilized on cloisite 30B and modified forms of cloisite 30B by adsorption and covalent methods. Food Chem, 2022, 373: 131425.

[4]

Behera S, Ray RC. Batch ethanol production from cassava (Manihot esculenta Crantz.) flour using Saccharomyces cerevisiae cells immobilized in calcium alginate. Ann Microbiol, 2015, 65(2): 779-783.

[5]

Cao LY, Yang YF, Zhang X, Chen YH, Yao JW, Wang X, Bai FW. Deciphering molecular mechanism underlying self-flocculation of Zymomonas mobilis for robust production. Appl Environ Microb, 2022, 88(9): 1-14.

[6]

Cassidy MB, Lee H, Trevors JT. Environmental applications of immobilized microbial cells: a review. J Ind Microbiol, 1996, 16: 79-101.

[7]

Colclasure VJ, Soderquist TJ, Lynch T, Schubert N, McCormick DS, Urrutia E, Knickerbocker C, McCord D, Kavouras JH. Coliform bacteria, fabrics, and the environment. Am J Infect Control, 2015, 43(2): 154-158.

[8]

Frølund B, Palmgren R, Keiding K, Nielsen PH. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res, 1996, 30(8): 1749-1758.

[9]

Fujii N, Oki T, Sakurai A, Suye S, Sakakibara M. Ethanol production from starch by immobilized Aspergillus awamori and Saccharomyces pastorianus using cellulose carriers. J Ind Microbiol Biot, 2001, 27: 52-57.

[10]

Gao L. Carrier-bound immobilized enzymes: principles, application and desig-n, 2006, Hoboken: John Wiley & Sons.

[11]

Giese EC, Silva DDV, Costa AFM, Almeida SGS, Dussán KJ. Immobilized microbial nanoparticles for biosorption. Crit Rev Biotechnol, 2020, 40(5): 653-666.

[12]

Hartmann M, Kostrov X. Immobilization of enzymes on porous silicas-benefitsand challenges. Chem Soc Rev, 2013, 42: 6277-6289.

[13]

Hunt SM, Werner EM, Huang BC, Hamilton MA, Stewart PS. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol, 2004, 70(12): 7418-7425.

[14]

Karagoz P, Erhan E, Keskinler B, Ozkan M. The use of microporous divinyl benzene copolymer for yeast cell immobilization and ethanol production in packed-bed reactor. Appl Biochem Biotechnol, 2009, 152: 66-73.

[15]

Karagoz P, Bill RM, Ozkan M. Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations. Renew Energy, 2019, 143: 741-752.

[16]

Kurade MB, Waghmode TR, Xiong JQ, Govindwar SP, Jeon BH. Decolorization of textile industry effluent using immobilized consortium cells in upflow fixed bed reactor. J Cleaner Prod, 2019, 213: 884-891.

[17]

Langer SE, Oviedo NC, Marina M, Burgos JL, Martinez GA, Civello PM, Villarreal NM. Effects of heat treatment on enzyme activity and expression of key genes controlling cell wall remodeling in strawberry fruit. Plant Physiol Bioch, 2018, 130: 334-344.

[18]

Larsen N, Vogensen FK, Gøbel RJ, Michaelsen KF, Forssten SD, Lahtinen SJ, Jakobsen M. Effect of Lactobacillus salivarius Ls-33 on fecal microbiota in obese adolescents. Clin Nutr, 2013, 32(6): 935-940.

[19]

Laurinavichene TV, Laurinavichius KS, Shastik ES, Ygankov AA. Inhibited growth of Clostridium butyricum in efficient H2 producing co-culture with Rhodobacter sphaeroides. Appl Microbiol Biotechnol, 2010, 100(24): 10649-10658.

[20]

Lee SH, Yeo SY, Cools P, Morent R. Plasma polymerization onto nonwoven polyethylene/polypropylene fibers for laccase immobilization as dye decolorization filter media. Text Res J, 2019, 89(17): 3578-3590.

[21]

Likotrafiti E, Tuohy KM, Gibson GR, Rastall RA. An in vitro study of the effect of probiotics, prebiotics and synbiotics on the elderly faecal microbiota. Anaerobe, 2014, 27: 50-55.

[22]

Liu S, Dai J, Sun Y, Wang X, Li F, Liu H, Wang L, Li Y, Tong Y, Xiu Z. Effects of rice husk on the tolerance of Saccharomyces cerevisiae to high temperature and ethanol concentration. Fuel, 2023, 333(1): 126406.

[23]

Lou L, Huang Q, Lou Y, Lu J, Hu B, Lin Q. Adsorption and degradation in the removal of nonylphenol from water by cells immobilized on biochar. Chemosphere, 2019, 228: 676-684.

[24]

Ma Z, Li C, Su H. Dark bio-hydrogen fermentation by an immobilized mixed culture of Bacillus cereus and Brevumdimonas naejangsanensis. Renew Energy, 2017, 105: 458-464.

[25]

Mishra A, Sharma AK, Sharma S, Bagai R, Mathur AS, Gupta RP, Tuli DK. Lignocellulosic ethanol production employing immobilized Saccharomyces cerevisiae in packed bed reactor. Renew Energy, 2016, 98: 57-63.

[26]

Mortazavi S, Aghaei H. Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified Na-sepiolite. Int J Biol Macromol, 2020, 164: 1-12.

[27]

Nezhad MK, Aghaei H. Tosylated cloisite as a new heterofunctional carrier for covalent immobilization of lipase and its utilization for production of biodiesel from waste frying oil. Renew Energy, 2021, 164: 876-888.

[28]

Nocker A, Sossa-Fernandez P, Burr MD, Anne K. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol, 2007, 73: 5111-5117.

[29]

Ogbonna J, Mashima H, Tanaka H. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresour Technol, 2001, 76(1): 1-8.

[30]

Oliveira AF, Bastos RG, de la Torre LG. Bacillus subtilis immobilization in alginate microfluidic-based microparticles aiming to improve lipase productivity. Biochem Engin J, 2019, 143: 110-120.

[31]

Pan X, Wu T, Zhang L, Song Z, Tang H, Zhao Z. In vitro evaluation on adherence and antimicrobial properties of a candidate probiotic Clostridium butyricum CB2 for farmed fish. J Appl Microbiol, 2008, 105(5): 1623-1629.

[32]

Park JK, Chang HN. Microencapsulation of microbial cells. Biotechnol Adv, 2000, 18: 303-319.

[33]

Picioreanu C, van Loosdrecht MCM, Heijnen JJ. Modelling and predicting biofilm structure, community structure and co-operation in biofilms, 2000, Cambridge: Cambridge University Press, 129-166.

[34]

Rodríguez-Restrepo YA, Orrego CE. Immobilization of enzymes and cells on lignocellulosic materials. Environ Chem Lett, 2020, 18: 787-806.

[35]

Sakurai A, Nishida Y, Saito H, Sakakibara M. Ethanol production by repeated batch culture using yeast cells immobilized within porous cellulose carriers. J Biosci Bioeng, 2000, 90(5): 526-529.

[36]

Sekoai PT, Awosusi AA, Yoro KO, Singo M, Oloye O, Ayeni AO, Bodunrin M, Daramola MO. Microbial cell immobilization in biohydrogen production: a short overview. Crit Rev Biotechnol, 2018, 38(2): 157-171.

[37]

Shim EJ, Lee SH, Song WS, Kim HR. Development of an enzyme-immobilized support using a polyester woven fabric. Text Res J, 2017, 87(1): 3-14.

[38]

Sun F, Wu D, Qiu Z, Jin M, Wang X, Li J. Development of real-time PCR systems based on SYBR Green for the specific detection and quantification of Klebsiella pneumoniae in infant formula. Food Control, 2010, 21(4): 487-491.

[39]

Taheri-Kafrani A, Kharazmi S, Nasrollahzadeh M, Soozanipour A, Ejeian F, Etedali P, Mansouri-Tehrani HA, Razmjou A, Yek SMG, Varma RS. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit Rev Food Sci Nutr, 2021, 61(19): 3160-3196.

[40]

Tavernier S, Coenye T. Quantification of Pseudomonas aeruginosa in multispecies biofilms using PMA-qpcr. Peer J, 2015, 3: 11-15.

[41]

Tran C, Nosworthy N, Bilek M, McKenzie D. Covalent immobilization of enzymes and yeast: towards a continuous simultaneous saccharification and fermentation process for cellulosic ethanol. Biomass Bioenerg, 2015, 81: 234-241.

[42]

Vesper S, McKinstry C, Hartmann C, Neace M, Yoder S, Vesper A. Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA). J Microbiol Methods, 2008, 72: 180-184.

[43]

Vlaeminck SE, Terada A, Smets BF, de Clippeleir H, Schaubroeck T, Bolca S, Demeester L, Mast J, Boon N, Carballa M, Verstraete W. Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox. Appl Environ Microbiol, 2010, 76(3): 900-909.

[44]

Wang Z, Liu L, Yao J, Cai W. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere, 2006, 63(10): 1728-1735.

[45]

Wang C, Liu S, Xu X, Zhao C, Yang F, Wang D. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate. Appl Microbiol Biotechnol, 2017, 101(9): 3821-3828.

[46]

Yang ST, Luo J, Chen C. Zhong JJ. A Fibrous-Bed Bioreactor for Continuous Production of Monoclonal Antibody by Hybridoma. Biomanufacturing Advances in Biochemical Engineering, 2004, Berlin, Heidelberg: Springer

[47]

Zhang LL, Feng XX, Zhu NW, Chen JM. Role of extracellular protein in the formation and stability of aerobic granules. Enzyme Microbial Technol, 2007, 41(5): 551-557.

[48]

Zhang C, Yang L, Tsapekos P, Zhang Y, Angelidaki I. Immobilization of Clostridium kluyveri on wheat straw to alleviate ammonia inhibition during chain elongation for n-caproate production. Environ Int, 2019, 127: 134-141.

[49]

Zhang C, Wang C, Zhao S, Xiu ZL. Role of c-di-GMP in improving stress resistance of alginate-chitosan microencapsulated Bacillus subtilis cells in simulated digestive fluids. Biotechnol Lett, 2021, 43: 677-690.

[50]

Zhang C, Wang C, Xiu ZL. Regulation of c-di-GMP in biofilm formation of Klebsiella pneumoniae in response to antibiotic and probiotic supernatant in a chemostat system. Curr Microbiol, 2021, 78: 133-143.

[51]

Zhu Y. Immobilized cell fermentation for production of chemicals and fuels Bioprocess. Bioprocessing for Value-Added Products from Renewable Resources: New Technologies and Applications, 2007, Amsterdam: Elsevier, 373-396.

[52]

Zhu Y, Zhang Y, Ren H, Geng H, Xu K, Huang H, Ding L. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor. Bioresour Technol, 2015, 180: 345-351.

[53]

Żur J, Piński A, Michalska J, Hupert-Kocurek K, Nowak A, Wojcieszyńska D, Guzik U. A whole-cell immobilization system on bacterial cellulose for the paracetamol-degrading Pseudomonas moorei KB4 strain. Int Biodeterior Biodegrad, 2020, 149: 104919.

Funding

National Key R&D Program of China(No. 2022YFA0911802)

AI Summary AI Mindmap
PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/