Microalgae and co-culture for polishing pollutants of anaerobically treated agro-processing industry wastewater: the case of slaughterhouse

Dejene Tsegaye Bedane , Seyoum Leta Asfaw

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 81

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 81 DOI: 10.1186/s40643-023-00699-4
Research

Microalgae and co-culture for polishing pollutants of anaerobically treated agro-processing industry wastewater: the case of slaughterhouse

Author information +
History +
PDF

Abstract

Anaerobic reactor effluent supported microalgae biomass production

Microalgae potentially remove residual organic matter and nutrients to the required level

Biomass of the microalgae can be used for high valued products production

Integration of microalgae at polishing step demonstrate an exercise of circular bioeconomy

Keywords

Biomass, microalgae / Nutrient removal-efficiency / Photobioreactor / Resource-recovery / Wastewater

Cite this article

Download citation ▾
Dejene Tsegaye Bedane, Seyoum Leta Asfaw. Microalgae and co-culture for polishing pollutants of anaerobically treated agro-processing industry wastewater: the case of slaughterhouse. Bioresources and Bioprocessing, 2023, 10(1): 81 DOI:10.1186/s40643-023-00699-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM. Microalgae and wastewater treatment. Saudi J Biol Sci, 2012, 19(3): 257-275.

[2]

Acevedo S, Pino NJ, Peñuela GA. Remoción de nitrógeno, fósforo y producción de biomasa de scenedesmus sp en agua residual domestica. Ingeniería y Competitividad, 2017, 19(1): 177.

[3]

Adeyinka A, Adekanmi AS, Adekanmi UT, Adekanmi. . Biotreatment of slaughterhouse waste water by microalgae. United Int J Res Technol (UIJRT), 2020, 01(09): 19-30.

[4]

Ajala SO, Alexander ML. Assessment of chlorella vulgaris, scenedesmus obliquus, and oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. Int J Energy Environ Eng, 2020, 11(3): 311-326.

[5]

Akar T, Tunali S. Biosorption performance of botrytis cinerea fungal by-products for removal of Cd(II) and Cu(II) ions from aqueous solutions. Miner Eng, 2005, 18(11): 1099-1109.

[6]

AlMomani FA, Örmeci B. Performance Of Chlorella Vulgaris, Neochloris Oleoabundans, and Mixed Indigenous Microalgae for Treatment of Primary Effluent, Secondary Effluent and Centrate. Ecol Eng, 2016, 95: 280-289.

[7]

Andersen RA, Kawachi M. Algal Culturing Techniques, 2005, London: Elsevier/Academic Press.

[8]

Arbib Z, Ruiz J, Álvarez-Díaz P, Garrido-Pérez C, Perales JA. Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res, 2014, 49: 465-474.

[9]

Ashekuzzaman SM, Forrestal P, Richards K, Fenton O. Dairy industry derived wastewater treatment sludge: generation, type and characterization of nutrients and metals for agricultural reuse. J Clean Prod, 2019, 230: 1266-1275.

[10]

Asmare AM, Demessie BA, Murthy GS. Investigation of microalgae co-cultures for nutrient recovery and algal biomass production from dairy manure. Appl Eng Agric, 2014, 30(2): 335-342.

[11]

Ayre JM, Moheimani NR, Borowitzka MA. Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Res, 2017, 24: 218-226.

[12]

Bohutskyi P, Liu K, Nasr LK, Byers N, Rosenberg JN, Oyler GA, Betenbaugh MJ, Bouwer EJ. Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Appl Microbiol Biotechnol, 2015, 99(14): 6139-6154.

[13]

Bohutskyi P, Kligerman DC, Byers N, Nasr LK, Cua C, Chow S, Chunyang Su, Tang Y, Betenbaugh MJ, Bouwer EJ. Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of chlorella and scenedesmus microalgae and their poly-culture in primary and secondary wastewater. Algal Res, 2016, 19: 278-290.

[14]

Bustillo-Lecompte CF, Mehrvar M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances. J Environ Manage, 2015, 161: 287-302.

[15]

Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable Sust Energy Rev, 2013, 19: 360-369.

[16]

Carey RO, Migliaccio KW. Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems. Environ Manage, 2009, 44(2): 205-217.

[17]

Chalivendra S. 2014. “Bioremediation of Wastewater Using Microalgae.” Doctoral Dissertation, University of Dayton, 2014. University of Dayton. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1418994496.

[18]

Chaudhary R, Tong YW, Dikshit AK. CO2-assisted removal of nutrients from municipal wastewater by microalgae chlorella vulgaris and scenedesmus obliquus. Int J Environ Sci Technol, 2018, 15(10): 2183-2192.

[19]

Chen CY, Kuo EW, Nagarajan D, Ho SH, Di Dong C, Lee DJ, Chang JS. Cultivating chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Biores Technol, 2020, 302.

[20]

Chevalier P, Proulx D, Lessard P, Vincent WF, De La Noüe J. Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol, 2000, 12(2): 105-112.

[21]

Cho S, Luong TT, Lee D, You Kwan Oh, Lee T. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Biores Technol, 2011, 102(18): 8639-8645.

[22]

Choi HJ, Lee SM. Effects of microalgae on the removal of nutrients from wastewater: various concentrations of chlorella vulgaris. Environ Eng Res, 2012, 17(S1): 3-8.

[23]

Cormier I. 2010. “A STELLA Model for Integrated Algal Biofuel Production and Wastewater Treatment.” Digital Commons @ University of South Florida Graduate. University of South Florida Major. https://digitalcommons.usf.edu/etd/3562

[24]

Craggs R, Park J, Heubeck S, Sutherland D. High Rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. NZ J Bot, 2014, 52(1): 60-73.

[25]

Dalrymple OK, Halfhide T, Udom I, Gilles B, Wolan J, Zhang Q, Ergas S. Wastewater Use in algae production for generation of renewable resources: a review and preliminary results. Aquatic Biosystems, 2013, 9(2): 1-11.

[26]

Darpito C, Shin WS, Jeon S, Lee H, Nam K, Kwon JH, Yang JW. Cultivation of chlorella protothecoides in anaerobically treated brewery wastewater for cost-effective biodiesel production. Bioprocess Biosyst Eng, 2015, 38(3): 523-530.

[27]

Dawana D, Kassa K. Characterization and evaluation of biogas generation of arba minch town slaughterhouse wastewater, Ethiopia. Water Pract Technol, 2020, 15(4): 899-909.

[28]

de Alva S, Manuel VM, Luna-Pabello EC, Ortíz E. Green microalga scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Biores Technol, 2013, 146: 744-748.

[29]

de Godos I, Blanco S, García-Encina PA, Becares E, Muñoz R. Long-Term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Biores Technol, 2009, 100(19): 4332-4339.

[30]

De Nardi IR, Del Nery V, Amorim AKB, dos Santos NG, Chimenes F. Performances of SBR, chemical–DAF and UV disinfection for poultry slaughterhouse wastewater reclamation. Desalination, 2011, 269(1–3): 184-189.

[31]

Ding J, Zhao F, Cao Y, Xing Li, Liu W, Mei S, Ding J, . Cultivation of microalgae in dairy farm wastewater without sterilization. Int J Phytorem, 2015, 17(3): 222-227.

[32]

Dolganyuk V, Andreeva A, Budenkova E, Sukhikh S, Babich O, Ivanova S, Prosekov A, Ulrikh E. Study of morphological features and determination of the fatty acid composition of the microalgae lipid complex. Biomolecules, 2020, 10(11): 1-15.

[33]

El Bakraoui H, Slaoui M, Mabrouki J, Hmouni D, Laroche C. Recent trends on domestic, agricultural and industrial wastewaters treatment using microalgae biorefinery system. Appl Sci, 2023, 13(68): 1-54.

[34]

Farooq W, Lee YC, Ryu BG, Kim BH, Kim HS, Choi YE, Yang JW. Two-stage cultivation of two chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Biores Technol, 2013, 132(March): 230-238.

[35]

Fernandes F, Silkina A, Gayo-pel I, Kapoore RV, De Broise D, Llewellyn CA. Microalgae cultivation on nutrient rich digestate: the importance of strain and digestate tailoring under PH control. Appl Sci, 2022, 12(11): 5429.

[36]

Figueroa-Torres GM, Pittman JK, Theodoropoulos C. Optimisation of microalgal cultivation via nutrient-enhanced strategies: the biorefinery paradigm. Biotechnol Biofuels, 2021, 14(1): 1-16.

[37]

Fontoura JT, Da GS, Rolim MF, Gutterres M. Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalgae scenedesmus sp. Proc Safety Environ Prot, 2017, 111: 355-362.

[38]

Fornarelli, R, P A Bahri, and N Moheimani. 2017. “Utilization of Microalgae to Purify Waste Streams and Production of Value Added Products.” Australian Meat Processor Corporation. www.ampc.com.au

[39]

Gao F, Yang ZH, Li C, Zeng GM, Ma DH, Zhou Li. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Biores Technol, 2015, 179: 8-12.

[40]

Gentili FG. Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases. Biores Technol, 2014, 169: 27-32.

[41]

Goh PS, Lau WJ, Ismail AF, Samawati Z, Liang YY, Kanakaraju D. Microalgae-enabled wastewater treatment: a sustainable strategy for bioremediation of pesticides. Water, 2022, 15(70): 1-21.

[42]

Gonçalves AL, Pires JCM, Simões M. A review on the use of microalgal consortia for wastewater treatment. Algal Res, 2017, 24: 403-415.

[43]

Gordon JM, Polle JEW. Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol, 2007, 76(5): 969-975.

[44]

Gururani P, Bhatnagar P, Kumar V, Vlaskin MS, Grigorenko AV. Algal consortiums: a novel and integrated approach for wastewater treatment. Water, 2022

[45]

Hailu AM, Asfaw SL, Tegaye TA. Effect of carbon-rich-waste addition as co-substrate on the performance and stability of anaerobic digestion of abattoir wastewater without agitation. Biores Bioproc, 2020

[46]

Hameed MA. Effect of Algal density in bead, bead size and bead concentrations on wastewater nutrient removal. Bioresour Bioprocess, 2007, 6: 1185-1191.

[47]

Hena S, Fatimah S, Tabassum S. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Res Industry, 2015, 10: 1-14.

[48]

Hernández D, Riaño B, Coca M, Solana M, Bertucco A, García-González MC. Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chem Eng J, 2016, 285: 449-458.

[49]

Hilares RT, Atoche-Garay DF, Pinto DA, Pagaza MA, Ahmed GJ, Andrade C, Santos JC. Promising physicochemical technologies for poultry slaughterhouse wastewater treatment: a critical review. J Environ Chem Eng, 2021, 9(2

[50]

Hu X, Meneses YE, Stratton J, Wang B. Acclimation of consortium of micro-algae help removal of organic pollutants from meat processing wastewater. J Clean Prod, 2019, 214: 95-102.

[51]

Hu Y, Gong M, Feng S, Chunbao X, Bassi A. A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production. Renew Sust Energy Rev, 2019, 101: 476-492.

[52]

Hu D, Zhang J, Chu R, Yin Z, Jiangjun Hu, Nugroho YK, Li Z, Zhu L. Microalgae Chlorella Vulgaris and scenedesmus dimorphus co-cultivation with landfill leachate for pollutant removal and lipid production. Biores Technol, 2021, 342.

[53]

Ji MK, Abou-Shanab RAI, Kim SH, Salama ES, Lee SH, Kabra AN, Lee YS, Hong S, Jeon BH. Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol Eng, 2013, 58: 142-148.

[54]

Ji F, Liu Y, Hao R, Li G, Zhou Y, Dong R. Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater. Biores Technol, 2014, 161(June): 200-207.

[55]

Katırcıoğlu Sınmaz G, Erden B, Şengil IA. Cultivation of chlorella vulgaris in alkaline condition for biodiesel feedstock after biological treatment of poultry slaughterhouse wastewater. Int J Environ Sci Technol, 2022

[56]

Kim S, Park JE, Cho YB, Hwang SJ. Growth rate, organic carbon and nutrient removal rates of chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Biores Technol, 2013, 144: 8-13.

[57]

Kisielewska M, Dębowski M, Zieliński M, Kazimierowicz J, Quattrocelli P, Bordiean A. Effects of liquid digestate treatment on sustainable microalgae biomass production. Bioenergy Res, 2022, 15(1): 357-370.

[58]

Kobayashi N, Noel EA, Barnes A, Watson A, Rosenberg JN, Erickson G, Oyler GA. Characterization of three chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Biores Technol, 2013, 150: 377-386.

[59]

Kuo CM, Chen TY, Lin TH, Kao CY, Lai JT, Chang JS, Lin CS. Cultivation of chlorella sp. GD using piggery wastewater for biomass and lipid production. Biores Technol, 2015, 194: 326-333.

[60]

Kusmayadi A, Leong YK, Po-Han Lu, Huang C-Y, Yen H-W, Chang J-S. Simultaneous nutrients removal and biocompounds production from anaerobic digestate of dairy wastewater with chlorella sorokiniana su-1 culture. SSRN Electron J, 2022

[61]

la Varga D, De MA, Díaz IR, Soto M. Avoiding clogging in constructed wetlands by using anaerobic digesters as pre-treatment. Ecol Eng, 2013, 52: 262-269.

[62]

Lee Y-K, Chen W, Shen H, Han D, Li Y, Jones HDT, Timlin JA, Qiang H. Basic culturing and analytical measurement techniques. Handbook Microalgal Culture, 2013

[63]

Leta S, Assefa F, Dalhammar G. Characterization of tannery wastewater and assessment of downstream pollution profiles along modjo river in Ethiopia. Ethiopian J Biol Sci, 2003, 2: 157-168.

[64]

Li Y, Zhou W, Bing Hu, Min M, Chen P, Ruan RR. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Biores Technol, 2011, 102(23): 10861-10867.

[65]

Li Y-r, Tsai W-t, Hsu Y-C, Xie M-Z, Chen J-J. Comparison of autotrophic and mixotrophic cultivation of green microalgal for biodiesel production. Energy Procedia., 2014, 52: 371-376.

[66]

Liu XY, Hong Yu, Zhao GP, Zhang HK, Zhai QY, Wang Q. Microalgae-based swine wastewater treatment: strain screening, conditions optimization, physiological activity and biomass potential. Sci Total Environ, 2022, 807.

[67]

Maltsev Y, Maltseva K, Kulikovskiy M, Maltseva S. Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology, 2021, 10(10): 1-24.

[68]

Mamo TT, Mekonnen YS. Microwave-assisted biodiesel production from microalgae, scenedesmus species, using goat bone-made nano-catalyst. Appl Biochem Biotechnol, 2020, 190(4): 1147-1162.

[69]

Mehta AK, Chakraborty S. Multiscale modelling of mixotrophic algal growth in pilot-scale photobioreactors and its application to microalgal cultivation using wastewater. Environ Res, 2022, 214.

[70]

Mendes B, Brantes L, Vermelho AB. Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels, 2013, 6(1): 1-14.

[71]

Miranda J, Passarinho P, Gouveia L. Bioethanol production from scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biotechnol, 2012, 96: 555-564.

[72]

Mostafa S, Shalaby E, Mahmoud GI. Cultivating microalgae in domestic wastewater for biodiesel production cultivating microalgae in domestic wastewater for biodiesel production. Notulae Scientia Biologicae, 2012

[73]

Nagarajan D, Lee DJ, Chang JS. Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. Biores Technol, 2019, 290.

[74]

Nzayisenga JC, Farge X, Groll SL, Sellstedt A. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol Biofuels, 2020, 13(1): 1-8.

[75]

Onay M. Investigation of biobutanol efficiency of Chlorella Sp. cultivated in municipal wastewater. J Geosci Environ Prot, 2018, 06(10): 40-50.

[76]

Otondo A, Kokabian B, Stuart-Dahl S, Gude VG. Energetic evaluation of wastewater treatment using microalgae, chlorella vulgaris. J Environ Chem Eng, 2018, 6(2): 3213-3222.

[77]

Passos F, Gutiérrez R, Brockmann D, Steyer JP, García J, Ferrer I. Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal Res, 2015, 10: 55-63.

[78]

Praveen P, Loh KC. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. Appl Microbiol Biotechnol, 2015, 99(23): 10345-10354.

[79]

Praveen K, Abinandan S, Natarajan R, Kavitha MS. Biochemical responses from biomass of isolated chlorella sp., under different cultivation modes: non-linear modelling of growth kinetics. Braz J Chem Eng, 2018, 35(2): 489-496.

[80]

Qin L, Wang Z, Sun Y, Shu Q, Feng P, Zhu L, Jin Xu, Yuan Z. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ Sci Pollut Res, 2016, 23(9): 8379-8387.

[81]

Radin AY, Maizatul MS, Mohamed R. An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater. Int Aquatic Res, 2017, 9(3): 177-193.

[82]

Rasala BA, Mayfield SP. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res, 2015, 123(3): 227-239.

[83]

Rasoul-Amini S, Montazeri-Najafabady N, Shaker S, Safari A, Kazemi A, Mousavi P, Mobasher MA, Ghasemi Y. Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocatal Agric Biotechnol, 2014, 3(2): 126-131.

[84]

Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS. Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol, 2013, 25(5): 1529-1537.

[85]

Ruiz-Martinez A, Martin Garcia N, Romero I, Seco A, Ferrer J. Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Biores Technol, 2012, 126: 247-253.

[86]

Rybicki S. 1997. “Phosphorus removal from wastewater a literature review; advanced wastewater treatment.” Joint Polish - Swedish Reports

[87]

Salama ES, Kurade MB, Abou-Shanab RAI, El-Dalatony MM, Yang IS, Min B, Jeon BH. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sustain Energy Rev, 2017, 79: 1189-1211.

[88]

Scarponi P, Volpi Ghirardini AM, Bravi M, Cavinato C. Evaluation of chlorella vulgaris and scenedesmus obliquus growth on pretreated organic solid waste digestate. Waste Manage, 2021, 119: 235-241.

[89]

Shayesteh H, Vadiveloo A, Bahri PA, Moheimani NR. Can CO2 addition improve the tertiary treatment of anaerobically digested abattoir effluent (ADAE) by scenedesmus sp. (chlorophyta)?. Algal Res, 2021, 58.

[90]

Shi J, Podola B, Melkonian M. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol, 2007, 19(5): 417-423.

[91]

Singh SP, Singh P. Effect of temperature and light on the growth of algae species: a review. Renew Sustain Energy Rev, 2015, 50: 431-444.

[92]

Şirin S, Sillanpää M. Cultivating and harvesting of marine alga nannochloropsis oculata in local municipal wastewater for biodiesel. Biores Technol, 2015, 191: 79-87.

[93]

Solovchenko A, Verschoor AM, Jablonowski ND, Nedbal L. Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnol Adv, 2016, 34(5): 550-564.

[94]

Su Y, Mennerich A, Urban B. The long-term effects of wall attached microalgal biofilm on algae-based wastewater treatment. Biores Technol, 2016, 218: 1249-1252.

[95]

Subramaniyam V, Subashchandrabose SR, Ganeshkumar V, Thavamani P, Chen Z, Naidu R, Megharaj M. Cultivation of chlorella on brewery wastewater and nano-particle biosynthesis by its biomass. Biores Technol, 2016, 211: 698-703.

[96]

Tan KA, Lalung J, Wijaya D, Ismail N, Maznah W, Omar W, Wabaidur SM, Siddiqui MR, Alam M, Rafatullah M. Removal of nutrients by using green microalgae from lab-scale treated palm oil mill effluent. Fermentation, 2022, 8(11): 658.

[97]

Tsegaye D, Leta S. Optimization of operating parameters for biogas production using two—phase bench—scale anaerobic digestion of slaughterhouse wastewater: focus on methanogenic step. Biores Bioproc, 2022

[98]

Usha MT, Sarat Chandra T, Sarada R, Chauhan VS. Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond. Biores Technol, 2016, 214: 856-860.

[99]

Valchev D, Ribarova I. A review on the reliability and the readiness level of microalgae-based nutrient recovery technologies for secondary treated effluent in municipal wastewater treatment plants. Processes, 2022

[100]

Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R. Cultivation of green algae chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol, 2010, 162(4): 1174-1186.

[101]

Wang B, Lan CQ, Horsman M. Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv, 2012, 30(4): 904-912.

[102]

Whitton R, Ometto F, Pidou M, Jarvis P, Villa R, Whitton R, Ometto F, Pidou M, Jarvis P. “Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environ Technol Rev, 2015, 4(1): 133-148.

[103]

Worku Z, Leta S. Anaerobic digestion of slaughterhouse wastewater for methane recovery and treatability. Int J Sust Green Energy, 2017, 6(5): 84.

[104]

Xu J, Zhao Y, Zhao G, Zhang H. Nutrient Removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment. Appl Microbiol Biotechnol, 2015, 99(15): 6493-6501.

[105]

Yang L, Tan X, Li D, Chu H, Zhou X, Zhang Y, Hong Yu. Nutrients removal and lipids production by chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Biores Technol, 2015, 181: 54-61.

[106]

Yirgu Z, Leta S, Hussen A, Khan MM. Nutrient removal and carbohydrate production potential of indigenous scenedesmus sp. grown in anaerobically digested brewery wastewater. Environ Systems Res, 2020, 9(1): 1-14.

[107]

Zheng H, Xiaodan Wu, Zou G, Zhou T, Liu Y, Ruan R. Cultivation of chlorella vulgaris in manure-free piggery wastewater with high-strength ammonium for nutrients removal and biomass production: effect of ammonium concentration, carbon/nitrogen ratio and PH. Biores Technol, 2019, 273: 203-211.

[108]

Zhou W, Min M, Li Y, Bing Hu, Ma X, Cheng Y, Liu Y, Chen P, Ruan R. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Biores Technol, 2012, 110: 448-455.

[109]

Zhou S, Shao Y, Gao N, Deng Y, Li L, Deng J, Tan C. Characterization of algal organic matters of microcystis aeruginosa: biodegradability, DBP formation and membrane fouling potential. Water Res, 2014, 52(4): 199-207.

[110]

Zhu L, Hiltunen E, Shu Q, Zhou W, Li Z, Wang Z. Biodiesel production from algae cultivated in winter with artificial wastewater through PH regulation by acetic acid. Appl Energy, 2014, 128: 103-110.

[111]

Zhu S, Jiang R, Qin L, Huang D, Yao C, Jin Xu, Wang Z. Integrated strategies for robust growth of chlorella vulgaris on undiluted dairy farm liquid digestate and pollutant removal. Sci Total Environ, 2022, 852.

[112]

Ziganshina EE, Bulynina SS, Yureva KA, Ziganshin AM. Growth parameters of various green microalgae species in effluent from biogas reactors : the importance of effluent concentration. Plants, 2022, 11(24): 3583.

[113]

Zuliani L, Frison N, Jelic A, Fatone F, Bolzonella D, Ballottari M. Microalgae cultivation on anaerobic digestate of municipalwastewater, sewage sludge and agro-waste. Int J Mol Sci, 2016

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/