Ce–Zr-based mixed oxide catalyst for oxidative depolymerization of kenaf stalk (biomass) into vanillin
Hifza Rouf , Anita Ramli , Nur Akila Syakida Idayu Khairul Anuar , Normawati Mohamad Yunus
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 76
Ce–Zr-based mixed oxide catalyst for oxidative depolymerization of kenaf stalk (biomass) into vanillin
Since petroleum became depleted, rapid attention has been devoted to renewable energy sources such as lignocellulosic biomass to produce useful chemicals for industry (for instance vanillin). Three primary components of lignocellulose are lignin, cellulose, and hemicellulose. This paper uses microwave-assisted technology to oxidize the kenaf stalk (lignocellulosic biomass) and extract lignin to produce vanillin. Catalysts with variable acid–base and redox properties are essential for the mentioned effective conversion, for this reason, CeO2–CA, ZrO2–CA, and CeZrO2–CA catalysts were synthesized. The citrate complexation method was used for the catalyst synthesis and the physicochemical characteristics were analyzed by XRD, FTIR, FE–SEM, TEM, BET, and TPO. The characterization results demonstrated that CeZrO2–CA shows the smallest sized crystallites with a large specific surface area among the other chosen catalysts. For vanillin production, the effect of reaction temperature, reaction time, and catalyst loading was studied. It was observed that compared to other catalysts, CeZrO2–CA produced the highest vanillin yield of 9.90% for kenaf stalk for 5 wt% of CeZrO2–CA at 160 °C for 30 min. Furthermore, vanillin production using extracted lignin is studied keeping CeZrO2–CA as a catalyst and with the same operating parameters, which yielded 14.3% of vanillin. Afterward, the change in yield with respect to pH is also presented. Finally, the recyclability of catalyst is also studied, which showed that it has a strong metal support and greater stability which may give industrial applications a significant boost.
Biomass / Vanillin / Oxidative depolymerization / Citrate complexation method / CeZrO2–CA
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
NIST02 (2008) Mass Spectral Database |
| [46] |
Orsi RD, Lucejko JJ, Babudri F, Operamolla A (2022) Kumagawa and Soxhlet solvent fractionation of lignin: the impact on the chemical structure. ACS Omega. https://doi.org/10.1021/acsomega.2c02170 |
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
Ramli A (2023) Effect of CeO2 nanostructures morphology on facet(s) reactivity for direct oxidation of kenaf stalks to vanillin. Res Square, Iv, 0–26. https://www.researchsquare.com/article/rs-2939669/v1?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound |
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
Wang M, Zhang Q, Zou M, Wang J, Zhu D, Liu J, Wang J, Zuo Y, Chen J, Ning P (2023) Engineering surface properties of CuO/Ce0.6Zr0.4O2 catalysts for efficient low-temperature toluene oxidation. Catalyst |
| [59] |
|
| [60] |
|
| [61] |
Yoshikawa T, Shinohara S, Yagi T, Ryumon N, Nakasaka Y, Tago TM, Takao (2014) Production of phenols from lignin-derived slurry liquid using iron oxide catalyst. Appl Catal B Environ 146(54):289–297. https://doi.org/10.1016/j.apcatb.2013.03.010 |
| [62] |
|
| [63] |
|
| [64] |
Zhang F, Liu Z, Chen X, Rui N, Betancourt LE, Lin L, Xu W, Sun CJ, Abeykoon AMM, Rodriguez JA, Teržan J, Lorber K, Djinović P, Senanayake SD (2020) Effects of Zr doping into ceria for the dry reforming of methane over Ni/CeZrO2 catalysts: in situ studies with XRD, XAFS, and AP-XPS. ACS Catal 10(5): 3274–3284. https://doi.org/10.1021/acscatal.9b04451 |
| [65] |
|
| [66] |
|
/
| 〈 |
|
〉 |