Thermophilic Moorella thermoacetica as a platform microorganism for C1 gas utilization: physiology, engineering, and applications

Dechen Jia , Wangshuying Deng , Peng Hu , Weihong Jiang , Yang Gu

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 61

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 61 DOI: 10.1186/s40643-023-00682-z
Review

Thermophilic Moorella thermoacetica as a platform microorganism for C1 gas utilization: physiology, engineering, and applications

Author information +
History +
PDF

Abstract

In the context of the rapid development of low-carbon economy, there has been increasing interest in utilizing naturally abundant and cost-effective one-carbon (C1) substrates for sustainable production of chemicals and fuels. Moorella thermoacetica, a model acetogenic bacterium, has attracted significant attention due to its ability to utilize carbon dioxide (CO2) and carbon monoxide (CO) via the Wood–Ljungdahl (WL) pathway, thereby showing great potential for the utilization of C1 gases. However, natural strains of M. thermoacetica are not yet fully suitable for industrial applications due to their limitations in carbon assimilation and conversion efficiency as well as limited product range. Over the past decade, progresses have been made in the development of genetic tools for M. thermoacetica, accelerating the understanding and modification of this acetogen. Here, we summarize the physiological and metabolic characteristics of M. thermoacetica and review the recent advances in engineering this bacterium. Finally, we propose the future directions for exploring the real potential of M. thermoacetica in industrial applications.

Keywords

Moorella thermoacetica / C1 gases / Physiology and metabolism / Genetic tools / Strain improvements

Cite this article

Download citation ▾
Dechen Jia, Wangshuying Deng, Peng Hu, Weihong Jiang, Yang Gu. Thermophilic Moorella thermoacetica as a platform microorganism for C1 gas utilization: physiology, engineering, and applications. Bioresources and Bioprocessing, 2023, 10(1): 61 DOI:10.1186/s40643-023-00682-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed A, Lewis RS. Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng, 2007, 97(5): 1080-1086.

[2]

Andreesen JR, Schaupp A, Neurauter C, Brown A, Ljungdahl LG. Fermentation of glucose, fructose, and xylose by Clostridiumthermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2. J Bacteriol, 1973, 114(2): 743-751.

[3]

Bae J, Jin S, Kang S, Cho BK, Oh MK. Recent progress in the engineering of C1-utilizing microbes. Curr Opin Biotechnol, 2022, 78: 102836.

[4]

Balcombe P, Speirs JF, Brandon NP, Hawkes AD. Methane emissions: choosing the right climate metric and time horizon. Environ Sci Process Impacts, 2018, 20(10): 1323-1339.

[5]

Basen M, Muller V. "Hot" acetogenesis. Extremophiles, 2017, 21(1): 15-26.

[6]

Bengelsdorf FR, Poehlein A, Esser C, Schiel-Bengelsdorf B, Daniel R, Durre P. Complete genome sequence of the acetogenic bacterium Moorellathermoacetica DSM 2955T. Genome Announc, 2015, 3(5): e01157-e1215.

[7]

Bourgade B, Millard J, Humphreys CM, Minton NP, Islam MA. Enabling ethanologenesis in Moorellathermoacetica through construction of a replicating shuttle vector. Fermentation, 2022, 8(11): 585.

[8]

Breitkopf R, Uhlig R, Drenckhan T, Fischer RJ. Two propanediol utilization-like proteins of Moorellathermoacetica with phosphotransacetylase activity. Extremophiles, 2016, 20(5): 653-661.

[9]

Brumm PJ, Datta R (1985) Production of acetic acid by an improved fermentation process. US Patent US4814273A, 20 Mar 1985

[10]

Buckel W. Energy conservation in fermentations of anaerobic bacteria. Front Microbiol, 2021, 12: 703525.

[11]

Chang Z, Dai W, Mao Y, Cui Z, Zhang Z, Wang Z, Ma H, Chen T. Enhanced 3-hydroxypropionic acid production from acetate via the malonyl-CoA pathway in Corynebacteriumglutamicum. Front Bioeng Biotechnol, 2021, 9: 808258.

[12]

Chen L, Yan W, Qian X, Chen M, Zhang X, Xin F, Zhang W, Jiang M, Ochsenreither K. Increased lipid production in Yarrowia lipolytica from acetate through metabolic engineering and cosubstrate fermentation. ACS Synth Biol, 2021, 10(11): 3129-3138.

[13]

Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol, 1994, 44(4): 812-826.

[14]

Daniel SL, Drake HL. Oxalate- and glyoxylate-dependent growth and acetogenesis by Clostridium thermoaceticum. Appl Environ Microbiol, 1993, 59(9): 3062-3069.

[15]

De Tissera S, Köpke M, Simpson SD, Humphreys C, Minton NP, Dürre P. Syngas Biorefinery and Syngas Utilization Biorefineries, 2019, 166: 247-280.

[16]

Drake HL. Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridiumthermoaceticum. J Bacteriol, 1982, 150(2): 702-709.

[17]

Drake HL, Daniel SL. Physiology of the thermophilic acetogen Moorella thermoacetica. Res Microbiol, 2004, 155(10): 869-883.

[18]

Drake HL, Gössner AS, Daniel SL. Old acetogens, new light. Ann N Y Acad Sci, 2008, 1125: 100-128.

[19]

Ehsanipour M, Suko AV, Bura R. Fermentation of lignocellulosic sugars to acetic acid by Moorellathermoacetica. J Ind Microbiol Biotechnol, 2016, 43(6): 807-816.

[20]

Fast AG, Schmidt ED, Jones SW, Tracy BP. Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr Opin Biotechnol, 2015, 33: 60-72.

[21]

Fontaine FE, Peterson WH, McCoy E, Johnson MJ, Ritter GJ. A new type of glucose fermentation by Clostridiumthermoaceticum. J Bacteriol, 1942, 43(6): 701-715.

[22]

Fröstl JM, Seifritz C, Drake HL. Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridiumthermoaceticum. J Bacteriol, 1996, 178(15): 4597-4603.

[23]

Gößner AS, Devereux R, Ohnemüller N, Acker G, Stackebrandt E, Drake HL. Thermicanus aegyptius gen. nov., sp. Nov., isolated from oxic soil, a fermentative microaerophile that grows commensally with the thermophilic acetogen Moorellathermoacetica. Appl Environ Microbiol, 1999, 65(11): 5124-5133.

[24]

Ha BN, Pham DM, Masuda D, Kasai T, Katayama A. Humin-promoted microbial electrosynthesis of acetate from CO2 by Moorellathermoacetica. Biotechnol Bioeng, 2022, 119(12): 3487-3496.

[25]

Holden JF. Schaechter M. Extremophiles: Hot Environments. Encyclopedia of Microbiology, 2009, 3, Oxford, UK: Academic Press, 127-146.

[26]

Hu P, Rismani-Yazdi H, Stephanopoulos G. Anaerobic CO2 fixation by the acetogenic bacterium Moorellathermoacetica. AIChE J, 2013, 59: 3176-3183.

[27]

Hu P, Chakraborty S, Kumar A, Woolston B, Liu H, Emerson D, Stephanopoulos G. Integrated bioprocess for conversion of gaseous substrates to liquids. Proc Natl Acad Sci U S A, 2016, 113(14): 3773-3778.

[28]

Huang H, Wang S, Moll J, Thauer RK. Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorellathermoacetica growing on glucose or H2 plus CO2. J Bacteriol, 2012, 194(14): 3689-3699.

[29]

Huang B, Yang H, Fang G, Zhang X, Wu H, Li Z, Ye Q. Central pathway engineering for enhanced succinate biosynthesis from acetate in Escherichiacoli. Biotechnol Bioeng, 2018, 115(4): 943-954.

[30]

Huang B, Fang G, Wu H, Sun J, Li Z, Ye Q. Efficient biosynthesis of succinate from paper mill wastewater by engineered Escherichiacoli. Appl Biochem Biotechnol, 2019, 189(4): 1195-1208.

[31]

Hwang HW, Yoon J, Min K, Kim M-S, Kim S-J, Cho DH, Susila H, Na J-G, Oh M-K, Kim YH. Two-stage bioconversion of carbon monoxide to biopolymers via formate as an intermediate. Chem Eng J, 2020, 389: 124394.

[32]

Islam MA, Zengler K, Edwards EA, Mahadevan R, Stephanopoulos G. Investigating Moorellathermoacetica metabolism with a genome-scale constraint-based metabolic model. Integr Biol (camb), 2015, 7(8): 869-882.

[33]

Iwasaki Y, Kita A, Sakai S, Takaoka K, Yano S, Tajima T, Kato J, Nishio N, Murakami K, Nakashimada Y. Engineering of a functional thermostable kanamycin resistance marker for use in Moorellathermoacetica ATCC39073. FEMS Microbiol Lett, 2013, 343(1): 8-12.

[34]

Iwasaki Y, Kita A, Yoshida K, Tajima T, Yano S, Shou T, Saito M, Kato J, Murakami K, Nakashimada Y. Homolactic acid fermentation by the genetically engineered thermophilic homoacetogen Moorellathermoacetica ATCC 39073. Appl Environ Microbiol, 2017, 83(8): e00247-e317.

[35]

Jensen , Tellgren-Roth C, Redl S, Maury J, Jacobsen SAB, Pedersen LE, Nielsen AT. Genome-wide systematic identification of methyltransferase recognition and modification patterns. Nat Commun, 2019, 10(1): 3311.

[36]

Jia D, He M, Tian Y, Shen S, Zhu X, Wang Y, Zhuang Y, Jiang W, Gu Y. Metabolic engineering of gas-fermenting Clostridiumljungdahlii for efficient co-production of isopropanol, 3-hydroxybutyrate, and ethanol. ACS Synth Biol, 2021, 10(10): 2628-2638.

[37]

Jiang W, Hernández Villamor D, Peng H, Chen J, Liu L, Haritos V, Ledesma-Amaro R. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat Chem Biol, 2021, 17(8): 845-855.

[38]

Kato J, Takemura K, Kato S, Fujii T, Wada K, Iwasaki Y, Aoi Y, Matsushika A, Murakami K, Nakashimada Y. Metabolic engineering of Moorellathermoacetica for thermophilic bioconversion of gaseous substrates to a volatile chemical. AMB Express, 2021, 11(1): 59.

[39]

Keller FA, Ganoung JS, Luenser SJ (1983) Mutant strain of Clostridium thermoaceticum useful for the preparation of acetic acid. NO Patent NO840908L, 12 Sept 1984

[40]

Kellum R, Drake HL. Effect of cultivation gas phase on hydrogenase of the acetogen Clostridiumthermoaceticum. J Bacteriol, 1984, 160(1): 466-469.

[41]

Kimura Z, Kita A, Iwasaki Y, Nakashimada Y, Hoshino T, Murakami K. Glycerol acts as alternative electron sink during syngas fermentation by thermophilic anaerobe Moorellathermoacetica. J Biosci Bioeng, 2016, 121(3): 268-273.

[42]

Kita A, Iwasaki Y, Sakai S, Okuto S, Takaoka K, Suzuki T, Yano S, Sawayama S, Tajima T, Kato J, Nishio N, Murakami K, Nakashimada Y. Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorellathermoacetica. J Biosci Bioeng, 2013, 115(4): 347-352.

[43]

Kobayashi S, Kato J, Wada K, Takemura K, Kato S, Fujii T, Iwasaki Y, Aoi Y, Morita T, Matsushika A, Murakami K, Nakashimada Y. Reversible hydrogenase activity confers flexibility to balance intracellular redox in Moorellathermoacetica. Front Microbiol, 2022, 13.

[44]

Lai N, Luo Y, Fei P, Hu P, Wu H. One stone two birds: Biosynthesis of 3-hydroxypropionic acid from CO2 and syngas-derived acetic acid in Escherichiacoli. Synth Syst Biotechnol, 2021, 6(3): 144-152.

[45]

Liao JC, Mi L, Pontrelli S, Luo S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol, 2016, 14(5): 288-304.

[46]

Liew F, Henstra AM, Kӧpke M, Winzer K, Simpson SD, Minton NP. Metabolic engineering of Clostridiumautoethanogenum for selective alcohol production. Metab Eng, 2017, 40: 104-114.

[47]

Litty D, Kremp F, Müller V. One substrate, many fates: different ways of methanol utilization in the acetogen Acetobacteriumwoodii. Environ Microbiol, 2022, 24(7): 3124-3133.

[48]

Liu Y, Wu H, Li Q, Tang X, Li Z, Ye Q. Process development of succinic acid production by Escherichiacoli NZN111 using acetate as an aerobic carbon source. Enzyme Microb Technol, 2011, 49(5): 459-464.

[49]

Liu Z, Wang K, Chen Y, Tan T, Nielsen J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat Catal, 2020, 3(3): 274-288.

[50]

Liu ZY, Jia DC, Zhang KD, Zhu HF, Zhang Q, Jiang WH, Gu Y, Li FL. Ethanol metabolism dynamics in Clostridiumljungdahlii grown on carbon monoxide. Appl Environ Microbiol, 2020, 86(14): e00730-e820.

[51]

Martin DR, Lundie LL, Kellum R, Drake HL. Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridiumthermoaceticum. Curr Microbiol, 1983, 8(6): 337-340.

[52]

Merkel M, Kiefer D, Schmollack M, Blombach B, Lilge L, Henkel M, Hausmann R. Acetate-based production of itaconic acid with Corynebacteriumglutamicum using an integrated pH-coupled feeding control. Bioresour Technol, 2022, 351: 126994.

[53]

Mock J, Wang S, Huang H, Kahnt J, Thauer RK. Evidence for a Hexaheteromeric Methylenetetrahydrofolate Reductase in Moorellathermoacetica. J Bacteriol, 2014, 196(18): 3303-3314.

[54]

Müller V. Energy conservation in acetogenic bacteria. Appl Environ Microbiol, 2003, 69(11): 6345-6353.

[55]

Neuendorf CS, Vignolle GA, Derntl C, Tomin T, Novak K, Mach RL, Birner-Grünberger R, Pflügl S. A quantitative metabolic analysis reveals Acetobacteriumwoodii as a flexible and robust host for formate-based bioproduction. Metab Eng, 2021, 68: 68-85.

[56]

Oliveira L, Rückel A, Nordgauer L, Schlumprecht P, Hutter E, Weuster-Botz D. Comparison of syngas-fermenting Clostridia in stirred-tank bioreactors and the effects of varying syngas impurities. Microorganisms, 2022, 10(4): 681.

[57]

Parekh SR, Cheryan M. Production of acetate by mutant strains of Clostridiumthermoaceticum. Appl Microbiol Biotechnol, 1991, 36(3): 384-387.

[58]

Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW. The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol, 2008, 10(10): 2550-2573.

[59]

Poehlein A, Bengelsdorf FR, Esser C, Schiel-Bengelsdorf B, Daniel R, Dürre P. Complete genome sequence of the type strain of the acetogenic bacterium Moorellathermoacetica DSM 521T. Genome Announc, 2015, 3(5): e01159-e1215.

[60]

Ragsdale SW. Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit Rev Biochem Mol Biol, 1991, 26(3–4): 261-300.

[61]

Rahayu F, Kawai Y, Iwasaki Y, Yoshida K, Kita A, Tajima T, Kato J, Murakami K, Hoshino T, Nakashimada Y. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorellathermoacetica. Bioresour Technol, 2017, 245(Pt B): 1393-1399.

[62]

Rahayu F, Tajima T, Kato J, Kato S, Nakashimada Y. Ethanol yield and sugar usability in thermophilic ethanol production from lignocellulose hydrolysate by genetically engineered Moorellathermoacetica. J Biosci Bioeng, 2020, 129(2): 160-164.

[63]

Redl S, Poehlein A, Esser C, Bengelsdorf FR, Jensen T, Jendresen CB, Tindall BJ, Daniel R, Dürre P, Nielsen AT. Genome-based comparison of all species of the genus moorella, and status of the species Moorella thermoacetica and Moorella thermoautotrophica. Front Microbiol, 2020, 10: 3070.

[64]

Reed WM (1984) Production of organic acids by a continuous fermentation process, IE Patent IE840295L, 11 Sept 1984

[65]

Rosenbaum FP, Poehlein A, Egelkamp R, Daniel R, Harder S, Schlüter H, Schoelmerich MC. Lactate metabolism in strictly anaerobic microorganisms with a soluble NAD+ -dependent l-lactate dehydrogenase. Environ Microbiol, 2021, 23(8): 4661-4672.

[66]

Rosenbaum FP, Poehlein A, Daniel R, Müller V. Energy-conserving dimethyl sulfoxide reduction in the acetogenic bacterium Moorellathermoacetica. Environ Microbiol, 2022, 24(4): 2000-2012.

[67]

Sakai S, Nakashimada Y, Yoshimoto H, Watanabe S, Okada H, Nishio N. Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22–1. Biotechnol Lett, 2004, 26(20): 1607-1612.

[68]

Sakai S, Nakashimada Y, Inokuma K, Kita M, Okada H, Nishio N. Acetate and ethanol production from H2 and CO2 by Moorella sp using a repeated batch culture. J Biosci Bioeng, 2005, 99(3): 252-258.

[69]

Savage MD, Wu ZG, Daniel SL, Lundie LL Jr, Drake HL. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol, 1987, 53(8): 1902-1906.

[70]

Schaible KR (1997) Acetate production characteristics of Clostridium Thermoaceticum strains grown on various media. Dissertation, South Dakota State University

[71]

Schuchmann K, Müller V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol, 2014, 12(12): 809-821.

[72]

Schwartz RD, Keller FA (1980) Acetic acid by fermentation. JP Patent JPS5726592A, 12 Feb 1982

[73]

Seifritz C, Fröstl JM, Drake HL, Daniel SL. Glycolate as a metabolic substrate for the acetogen Moorella thermoacetica. FEMS Microbiol Lett, 1999, 170: 399-405.

[74]

Seifritz C, Drake HL, Daniel SL. Nitrite as an energy-conserving electron sink for the acetogenic bacterium Moorellathermoacetica. Curr Microbiol, 2003, 46(5): 329-333.

[75]

Takemura K, Kato J, Kato S, Fujii T, Wada K, Iwasaki Y, Aoi Y, Matsushika A, Morita T, Murakami K, Nakashimada Y. Enhancing acetone production from H2 and CO2 using supplemental electron acceptors in an engineered Moorellathermoacetica. J Biosci Bioeng, 2023, 136(1): 13-19.

[76]

Tsukahara K, Kita A, Nakashimada Y, Hoshino T, Murakami K. Genome-guided analysis of transformation efficiency and carbon dioxide assimilation by Moorellathermoacetica Y72. Gene, 2014, 535(2): 150-155.

[77]

Ukpong MN, Atiyeh HK, De Lorme MJ, Liu K, Zhu X, Tanner RS, Wilkins MR, Stevenson BS. Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor. Biotechnol Bioeng, 2012, 109(11): 2720-2728.

[78]

Wang G, Wang DI. Elucidation of growth inhibition and acetic acid production by Clostridiumthermoaceticum. Appl Environ Microbiol, 1984, 47(2): 294-298.

[79]

Wang S, Huang H, Kahnt J, Thauer RK. A reversible electron-bifurcating ferredoxin- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorellathermoacetica. J Bacteriol, 2013, 195(6): 1267-1275.

[80]

Wang T, Guan C, Guo J, Liu B, Wu Y, Xie Z, Zhang C, Xing XH. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nat Commun, 2018, 9(1): 2475.

[81]

Wang J, Qin R, Guo Y, Ma C, Wang X, Chen K, Ouyang P. Engineering the native methylotrophs for the bioconversion of methanol to value-added chemicals: current status and future perspectives. Green Chem Eng, 2023, 4(2): 199-211.

[82]

Wei N, Oh EJ, Million G, Cate JH, Jin YS. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synth Biol, 2015, 4(6): 707-713.

[83]

Whitham JM, Tirado-Acevedo O, Chinn MS, Pawlak JJ, Grunden AM. Metabolic response of Clostridiumljungdahlii to oxygen exposure. Appl Environ Microbiol, 2015, 81(24): 8379-8391.

[84]

Wu Y, Wu J, Shen Q, Zheng X, Chen Y. Anaerobic fermentation metabolism of Moorellathermoacetica inhibited by copper nanoparticles: Comprehensive analyses of transcriptional response and enzyme activity. Water Res, 2021, 197.

[85]

Xu D, Tree DR, Lewis RS. The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy, 2011, 35(7): 2690-2696.

[86]

Xu D, Lewis RS. Syngas fermentation to biofuels: Effects of ammonia impurity in raw syngas on hydrogenase activity. Biomass Bioenergy, 2012, 45(45): 303-310.

[87]

Xu X, Niu C, Liu C, Wang J, Zheng F, Li Q. Screening lager yeast with higher ethyl-acetate production by adaptive laboratory evolution in high concentration of acetic acid. World J Microbiol Biotechnol, 2021, 37(7): 125.

[88]

Xue J, Isern NG, Ewing RJ, Liyu AV, Sears JA, Knapp H, Iversen J, Sisk DR, Ahring BK, Majors PD. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorellathermoacetica metabolic profiles. Appl Microbiol Biotechnol, 2014, 98(19): 8367-8375.

[89]

Yang H, Huang B, Lai N, Gu Y, Li Z, Ye Q, Wu H. Metabolic engineering of Escherichiacoli carrying the hybrid acetone-biosynthesis pathway for efficient acetone biosynthesis from acetate. Microb Cell Fact, 2019, 18(1): 6.

[90]

Yang H, Zhang C, Lai N, Huang B, Fei P, Ding D, Hu P, Gu Y, Wu H. Efficient isopropanol biosynthesis by engineered Escherichiacoli using biologically produced acetate from syngas fermentation. Bioresour Technol, 2020, 296: 122337.

[91]

Zhang GC, Kong II, Wei N, Peng D, Turner TL, Sung BH, Sohn JH, Jin YS. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast. Biotechnol Bioeng, 2016, 113(12): 2587-2596.

[92]

Zhang LJ, Hu P, Pan J, Yu HL, Xu JH. Immobilization of trophic anaerobic acetogen for semi-continuous syngas fermentation. Chin J Chem Eng, 2021, 29: 311-316.

Funding

The National Key R&D Program of China(2021YFC2103500)

Science and Technology Commission of Shanghai Municipality(21DZ1209100)

DNL Cooperation Fund, CAS(DNL202013)

Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(TSBICIP-KJGG-016)

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/