Municipal green waste as substrate for the microbial production of platform chemicals

Marianne Volkmar , Anna-Lena Maus , Martin Weisbrodt , Jonathan Bohlender , Alexander Langsdorf , Dirk Holtmann , Roland Ulber

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 43

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 43 DOI: 10.1186/s40643-023-00663-2
Research

Municipal green waste as substrate for the microbial production of platform chemicals

Author information +
History +
PDF

Abstract

In Germany alone, more than 5·106 tons of municipal green waste is produced each year. So far, this material is not used in an economically worthwhile way. In this work, grass clippings and tree pruning as examples of municipal green waste were utilized as feedstock for the microbial production of platform chemicals. A pretreatment procedure depending on the moisture and lignin content of the biomass was developed. The suitability of grass press juice and enzymatic hydrolysate of lignocellulosic biomass pretreated with an organosolv process as fermentation medium or medium supplement for the cultivation of Saccharomyces cerevisiae, Lactobacillus delbrueckii subsp. lactis, Ustilago maydis, and Clostridium acetobutylicum was demonstrated. Product concentrations of 9.4 gethanol L−1, 16.9 glactic acid L−1, 20.0 gitaconic acid L−1, and 15.5 gsolvents L−1 were achieved in the different processes. Yields were in the same range as or higher than those of reference processes grown in established standard media. By reducing the waste arising in cities and using municipal green waste as feedstock to produce platform chemicals, this work contributes to the UN sustainability goals and supports the transition toward a circular bioeconomy.

Keywords

Circular bioeconomy / Biomass valorization / Lignocellulose / Biobutanol / Green waste

Cite this article

Download citation ▾
Marianne Volkmar, Anna-Lena Maus, Martin Weisbrodt, Jonathan Bohlender, Alexander Langsdorf, Dirk Holtmann, Roland Ulber. Municipal green waste as substrate for the microbial production of platform chemicals. Bioresources and Bioprocessing, 2023, 10(1): 43 DOI:10.1186/s40643-023-00663-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Álvarez C, Reyes-SosaManuel F, Díez B. Enzymatic hydrolysis of biomass from wood. Microb Biotechnol, 2016, 9(2): 149-156.

[2]

Amândio MST, Rocha JMS, Xavier AMRB. Enzymatic hydrolysis strategies for cellulosic sugars production to obtain bioethanol from Eucalyptus globulus bark. Ferment, 2023, 9(3): 241.

[3]

Bay MS, Eslami F, Karimi K. The Relationship between structural features of lignocellulosic materials and ethanol production yield. Designs, 2022, 6(6): 119.

[4]

Becker L, Sturm J, Eiden F, Holtmann D. Analyzing and understanding the robustness of bioprocesses. Trends Biotechnol, 2023

[5]

Boakye-Boaten NA, Xiu S, Shahbazi A, Wang L, Li R, Schimmel K. Uses of miscanthus press juice within a green biorefinery platform. Bioresour Technol, 2016, 207: 285-292.

[6]

Boldrin A, Christensen TH. Seasonal generation and composition of garden waste in Aarhus (Denmark). Waste Manag, 2010, 30(4): 551-557.

[7]

Borisova DV, Kostadinova GS, Petkov GS, Dermendzhieva DM, Beev GG. An Assessment of two types of industrially produced municipal green waste compost by quality control indices. Appl Sci, 2022, 12(20): 10668.

[8]

Broda M, YelleSerwańska DJK. Bioethanol production from lignocellulosic biomass—challenges and solutions. Molecules, 2022

[9]

Cardoso HB, Frommhagen M, Wierenga PA, Gruppen H, Schols HA. Maillard induced saccharide degradation and its effects on protein glycation and aggregation. Food Chem Adv, 2023, 2: 100165.

[10]

Commission decision. Commission decision—of 18 December 2014—amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/ 98/ EC of the European Parliament and of the Council—(2014/ 955/ EU) (2014). Official Journal of the European Union.

[11]

Cox R, Narisetty V, Castro E, Agrawal D, Jacob S, Kumar G, . Fermentative valorisation of xylose-rich hemicellulosic hydrolysates from agricultural waste residues for lactic acid production under non-sterile conditions. Waste Manag, 2023, 166: 336-345.

[12]

Cui P, Ye Z, Chai M, Yuan J, Xiong Y, Yang H, Yao L. Effective fractionation of lignocellulose components and lignin valorization by combination of deep eutectic solvent with ethanol. Front Bioeng Biotechnol, 2022, 10: 1115469.

[13]

COUNCIL DIRECTIVE 1999/31/ EC of 26 April 1999 on the landfill of waste (1999). Official Journal of the European Union

[14]

Duque A, Álvarez C, Doménech P, Manzanares P, Moreno AD. Advanced bioethanol production: from novel raw materials to integrated biorefineries. Process, 2021, 9(2): 206.

[15]

Eades P, Kusch-Brandt S, Heaven S, Banks CJ. Estimating the generation of garden waste in England and the differences between rural and urban areas. Resour, 2020, 9(1): 8.

[16]

Engel M. Elektrofermentation mit Clostridiumacetobutylicum dissertation, 2019, Deutsche Bundesstiftung Umwelt: Technische Universität Kaiserslautern.

[17]

Fillat Ú, Ibarra D, Eugenio M, Moreno A, Tomás-Pejó E, Martín-Sampedro R. Laccases as a potential tool for the efficient conversion of lignocellulosic biomass: a review. Ferment, 2017, 3(2): 17.

[18]

Gallego-García M, Moreno AD, Manzanares P, Negro MJ, Duque A. Recent advances on physical technologies for the pretreatment of food waste and lignocellulosic residues. Bioresour Technol, 2023, 369: 128397.

[19]

Geiser E, Wiebach V, Wierckx N, Blank LM. Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biol Biotechnol, 2014, 1: 2.

[20]

Geiser E, Reindl M, Blank LM, Feldbrügge M, Wierckx N, Schipper K. Activating intrinsic carbohydrate-active enzymes of the smut fungus Ustilagomaydis for the degradation of plant cell wall components. Appl Environ Microbiol, 2016, 82(17): 5174-5185.

[21]

German Federal Statistical Office Destatis. Abfallbilanz (Abfallaufkommen/-verbleib, 2020, Abfallintensität: Abfallaufkommen nach Wirtschaftszweigen.

[22]

Gottwald M, Gottschalk G. The internal pH of Clostridiumacetobutylicum and its effect on the shift from acid to solvent formation. Arch Microbiol, 1985, 143(1): 42-46.

[23]

Hull CM, Loveridge EJ, Rolley NJ, Donnison IS, Kelly SL, Kelly DE. Co-production of ethanol and squalene using a Saccharomyces cerevisiae ERG1 (squalene epoxidase) mutant and agro-industrial feedstock. Biotechnol Biofuels, 2014, 7(1): 133.

[24]

Hüsemann MH, Papoutsakis ET. Solventogenesis in Clostridiumacetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnol Bioeng, 1988, 32(7): 843-852.

[25]

Inghels D, Dullaert W, Bloemhof J (2016) A model for improving sustainable green waste recovery. Resour Conserv Recycl 110:61–73. https://doi.org/10.1016/j.resconrec.2016.03.013

[26]

Jääskeläinen A-S, Liitiä T, Mikkelson A, Tamminen T. Aqueous organic solvent fractionation as means to improve lignin homogeneity and purity. Ind Crops Prod, 2017, 103: 51-58.

[27]

Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev, 1986, 50(4): 484-524.

[28]

Jönsson LJ, Alriksson B, Nilvebrant N-O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels, 2013, 6(1): 16.

[29]

Klement T, Milker S, Jäger G, Grande PM, de DomínguezMaríaBüchs PJ. Biomass pretreatment affects Ustilagomaydis in producing itaconic acid. Microb Cell Factories, 2012, 11: 43.

[30]

Kordala N, Lewandowska M, Bednarski W. Effect of the method for the elimination of inhibitors present in Miscanthus giganteus hydrolysates on ethanol production effectiveness. Biomass Conv Bioref, 2023, 13(3): 2089-2097.

[31]

Kumar M, Gayen K, Saini S. Role of extracellular cues to trigger the metabolic phase shifting from acidogenesis to solventogenesis in Clostridiumacetobutylicum. Bioresour Technol, 2013, 138: 55-62.

[32]

Kundu C, Samudrala SP, Kibria MA, Bhattacharya S. One-step peracetic acid pretreatment of hardwood and softwood biomass for platform chemicals production. Sci Rep, 2021, 11(1): 11183.

[33]

Langsdorf A, Volkmar M, Holtmann D, Ulber R. Material utilization of green waste: a review on potential valorization methods. Bioresour Bioprocess, 2021

[34]

Langsdorf A, Drommershausen AL, Volkmar M, Ulber R, Holtmann D. Fermentative α-humulene production from homogenized grass clippings as a growth medium. Molecules, 2022

[35]

Maddox IS, Murray AE. Production of n-butanol by fermentation of wood hydrolysate. Biotechnol Lett, 1983, 5(3): 175-178.

[36]

Maddox IS, Steiner E, Hirsch S, Wessner S, Gutierrez NA, Gapes JR, Schuster KC. The cause of "acid-crash" and "acidogenic fermentations" during the batch acetone–butanol–ethanol (ABE-) fermentation process. J Mol Microbiol Biotechnol, 2000, 2(1): 95-100.

[37]

Martín C, Dixit P, Momayez F, Jönsson LJ. Hydrothermal pretreatment of lignocellulosic feedstocks to facilitate biochemical conversion. Front Bioeng Biotechnol, 2022, 10: 846592.

[38]

Mechmech F, Marinova M, Chadjaa H, Rahni M, BenAkacha NM, Gargouri . Co-fermentation of alfalfa juice and hardwood hydrolysate for butanol production in combined biorefinery systems. Ind Crops Prod, 2016, 89: 29-33.

[39]

Medick J, Teichmann I, Kemfert C. Hydrothermal carbonization (HTC) of green waste: an environmental and economic assessment of HTC coal in the metropolitan region of Berlin, Germany. SSRN J, 2017

[40]

Mikulski D, Kłosowski G. High-pressure microwave-assisted pretreatment of softwood, hardwood and non-wood biomass using different solvents in the production of cellulosic ethanol. Biotechnol Biofuels Bioprod, 2023, 16(1): 19.

[41]

Mohapatra S, Mishra C, Behera SS, Thatoi H. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass—a review. Renew Sustain En Rev, 2017, 78: 1007-1032.

[42]

Molina GES, Shetty R, Bang-Berthelsen CH. Genotypical and phenotypical characterization of Apilactobacillus kunkeei NFICC 2128 for high-mannitol scale-up production using apple pulp and sugar beet molasses as fermentable biological side streams. Bioresour Technol Rep, 2023, 21: 101350.

[43]

Niglio S, Procentese A, Russo ME, Sannia G, Marzocchella A. Investigation of enzymatic hydrolysis of coffee silverskin aimed at the production of butanol and succinic acid by fermentative processes. Bioenerg Res, 2019, 12(2): 312-324.

[44]

Østby H, Hansen Line D, Horn JS, Eijsink Vincent GH, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol, 2020, 47(9–10): 623-657.

[45]

Pacheco AM, Gondim DR, Gonçalves LRB. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse. Appl Biochem Biotechnol, 2010, 161(1–8): 209-217.

[46]

Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. i: inhibition and detoxification. Bioresour Technol, 2000, 74(1): 17-24.

[47]

Parot M, Rodrigue D, Stevanovic T. High purity softwood lignin obtained by an eco-friendly organosolv process. Bioresour Technol Rep, 2022, 17: 100880.

[48]

Paulsen Thoresen P, Lange H, Rova U, Christakopoulos P, Matsakas L. Role and importance of solvents for the fractionation of lignocellulosic biomass. Bioresour Technol, 2023, 369: 128447.

[49]

Pick, Daniel; Dieterich, Martin; Heintschel, Sebastian (2012) Biogas Production Potential from Economically Usable Green Waste. Sustain 4(4):682–702. https://doi.org/10.3390/su4040682

[50]

Rajesh BJ, Sugitha S, Kavitha S, Yukesh KR, Merrylin J, Gopalakrishnan K. Lignocellulosic biomass pretreatment for enhanced bioenergy recovery: effect of lignocelluloses recalcitrance and enhancement strategies. Front Energy Res, 2021, 9: 646057.

[51]

Riaz S, Mazhar S, Abidi SH, Syed Q, Abbas N, Saleem Y, . Biobutanol production from sustainable biomass process of anaerobic ABE fermentation for industrial applications. Arch Microbiol, 2022, 204(11): 672.

[52]

Santamaria-Fernandez M, Ambye-Jensen M, Damborg VK, Lübeck M. Demonstration-scale protein recovery by lactic acid fermentation from grass clover—a single case of the production of protein concentrate and press cake silage for animal feeding trials. Biofuels Bioprod Bioref, 2019, 13(3): 502-513.

[53]

Schroedter L, Schneider R, Remus L, Venus J. l-(+)-Lactic acid from reed: comparing various resources for the nutrient provision of B coagulans. Resour, 2020, 9(7): 89.

[54]

SchoetersThoréEli FSJ, de Cuyper A, Noyens l, Goossens S, Lybaert S, . Microalgal cultivation on grass juice as a novel process for a green biorefinery. Algal Res, 2023, 69: 102941.

[55]

Sharma HS, Lyons G, McRoberts C. Biorefining of perennial grasses: a potential sustainable option for Northern Ireland grassland production. Chem Eng Res Des, 2011, 89(11): 2309-2321.

[56]

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. (2012) Determination of structural carbohydrates and lignin in biomass. laboratory analytical procedure (LAP). Technical Report. NREL/TP-510-42618.

[57]

Smit AT, Verges M, Schulze P, van Zomeren A, Lorenz H. Laboratory- to PILOT-scale fractionation of lignocellulosic biomass using an acetone organosolv process. ACS Sustain Chem Eng, 2022, 10(32): 10503-10513.

[58]

Sołowski G, Konkol I, Cenian A. Production of hydrogen and methane from lignocellulose waste by fermentation a review of chemical pretreatment for enhancing the efficiency of the digestion process. J Clean Prod, 2020, 267: 121721.

[59]

Ujor VC, Okonkwo CC. Microbial detoxification of lignocellulosic biomass hydrolysates: Biochemical and molecular aspects, challenges, exploits and future perspectives. Front Bioeng Biotechnol, 2022, 10: 1061667.

[60]

Varriale L, Volkmar M, Weiermüller J, Ulber R. Effects of pretreatment on the biocatalysis of renewable resources. Chem Ing Tec, 2022, 94(11): 1818-1826.

[61]

Wang H, Cao L, Li Qi, Wijayawardene NN, Zhao J, Cheng M, . Overexpressing GRE3 in Saccharomyces cerevisiae enables high ethanol production from different lignocellulose hydrolysates. Front Microbiol, 2022, 13: 1085114.

[62]

Weiermüller J, Akermann A, Laudensack W, Chodorski J, Blank LM, Ulber R. Brewers' spent grain as carbon source for itaconate production with engineered Ustilagomaydis. Bioresour Technol, 2021, 336: 125262.

[63]

Wierckx N, Agrimi G, Lübeck PS, Steiger MG, Mira NP, Punt PJ. Metabolic specialization in itaconic acid production: a tale of two fungi. Curr Opin Biotechnol, 2020, 62: 153-159.

[64]

Xiu S, Zhang Bo, Boakye-Boaten N, Shahbazi A. Green biorefinery of giant miscanthus for growing microalgae and biofuel production. Ferment, 2017, 3(4): 66.

Funding

Bundesministerium für Bildung und Forschung(031B0903B)

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (6375)

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/