Sustainable production of bacterioruberin carotenoid and its derivatives from Arthrobacter agilis NP20 on whey-based medium: optimization and product characterization

Nehad Noby , Sherine N. Khattab , Nadia A. Soliman

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 46

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 46 DOI: 10.1186/s40643-023-00662-3
Research

Sustainable production of bacterioruberin carotenoid and its derivatives from Arthrobacter agilis NP20 on whey-based medium: optimization and product characterization

Author information +
History +
PDF

Abstract

Bacterioruberin and its rare glycosylated derivatives are produced by Arthrobacter agilis as an adaptation strategy to low temperature conditions. The high antioxidant properties of bacterioruberin held great promise for different future applications like the pharmaceutical and food industries. Microbial production of bacterioruberin via a cost-effective medium will help increase its commercial availability and industrial use. The presented study aims to optimize the production of the rare C50 carotenoid bacterioruberin and its derivatives from the psychotrophic bacteria Arthrobacter agilis NP20 strain on a whey-based medium as a cost effective and readily available nutritious substrate. The aim of the study is extended to assess the efficiency of whey treatment in terms of estimating total nitrogen content in treated and untreated whey samples. The significance of medium ingredients on process outcome was first tested individually; then the most promising factors were further optimized using Box Behnken design (BBD). The produced carotenoids were characterized using UV–visible spectroscopy, FTIR spectroscopy, HPLC–DAD chromatography and HPLC-APCI-MS spectrometry. The maximum pigment yield (5.13 mg/L) was achieved after a 72-h incubation period on a core medium composed of 96% sweet whey supplemented with 0.46% MgSO4 & 0.5% yeast extract and inoculated with 6% (v/v) of a 24 h pre-culture (109 CFU/mL). The cost of the formulated medium was 1.58 $/L compared with 30.1 $/L of Bacto marine broth medium. The extracted carotenoids were identified as bacterioruberin, bis-anhydrobacteriouberin, mono anhydrobacterioruberin, and glycosylated bacterioruberin. The presented work illustrates the possibility of producing bacterioruberin carotenoid from Arthrobacter agilis through a cost-effective and eco-friendly approach using cheese whey-based medium.

Keywords

Arthrobacter agilis / Cost-effective medium / Glycosylated bacterioruberin derivatives / Radical scavenging activity / Response surface methodology / Valorization of cheese whey

Cite this article

Download citation ▾
Nehad Noby, Sherine N. Khattab, Nadia A. Soliman. Sustainable production of bacterioruberin carotenoid and its derivatives from Arthrobacter agilis NP20 on whey-based medium: optimization and product characterization. Bioresources and Bioprocessing, 2023, 10(1): 46 DOI:10.1186/s40643-023-00662-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbes M, Baati H, Guermazi S, Messina C, Santulli A, Gharsallah N, . Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern. BMC Complement Altern Med, 2013, 13(1): 255.

[2]

Agarwal H, Bajpai S, Mishra A, Kohli I, Varma A, Fouillaud M, . Bacterial pigments and their multifaceted roles in contemporary biotechnology and pharmacological applications. Microorganisms, 2023, 11(3): 614.

[3]

Aman Mohammadi M, Ahangari H, Mousazadeh S, Hosseini SM, Dufossé L. Microbial pigments as an alternative to synthetic dyes and food additives: a brief review of recent studies. Bioprocess Biosyst Eng, 2022, 45(1): 1-12.

[4]

Anunciato TP, da Rocha Filho PA. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J Cosmet Dermatol, 2012, 11(1): 51-54.

[5]

Arivizhivendhan KV, Mahesh M, Boopathy R, Swarnalatha S, Regina Mary R, Sekaran G. Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. J Food Sci Technol, 2018, 55(7): 2661-2670.

[6]

Ashokkumar V, Flora G, Sevanan M, Sripriya R, Chen W, Park JH, . Technological advances in the production of carotenoids and their applications—a critical review. Bioresour Technol, 2022, 367: 128215.

[7]

Carvalho F, Prazeres AR, Rivas J. Cheese whey wastewater: characterization and treatment. Sci Total Environ, 2013, 445: 385-396.

[8]

Celedón RS, Díaz LB. Natural pigments of bacterial origin and their possible biomedical applications. Microorganisms., 2021, 9(4): 739.

[9]

Chen X, Lim X, Bouin A, Lautier T, Zhang C. High-level de novo biosynthesis of glycosylated zeaxanthin and astaxanthin in Escherichia coli. Bioresour Bioprocess, 2021, 8: 1-13.

[10]

Crupi P, Milella RA, Antonacci D. Simultaneous HPLC-DAD-MS (ESI+) determination of structural and geometrical isomers of carotenoids in mature grapes. J Mass Spectrom, 2010, 45(9): 971-980.

[11]

Cruz PP, Gutiérrez AM, Ramírez-Mendoza RA, Flores EM, Espinoza AAO, Silva DCB (2020) A practical approach to metaheuristics using LabVIEW and MATLAB®: Chapman and Hall/CRC.

[12]

Cumming G, Fidler F, Vaux DL. Error bars in experimental biology. J Cell Biol, 2007, 177(1): 7-11.

[13]

de la Vega M, Sayago A, Ariza J, Barneto AG, León R. Characterization of a bacterioruberin-producing H. aloarchaea isolated from the marshlands of the O diel river in the southwest of S pain. Biotechnol Prog, 2016, 32(3): 592-600.

[14]

Dummer AM, Bonsall JC, Cihla JB, Lawry SM, Johnson GC, Peck RF. Bacterioopsin-mediated regulation of bacterioruberin biosynthesis in Halobacterium salinarum. J Bacteriol, 2011, 193(20): 5658-5667.

[15]

Eden PA, Schmidt TM, Blakemore RP, Pace NR. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Evol Microbiol, 1991, 41(2): 324-325.

[16]

Flegler A, Lipski A. The C50 carotenoid bacterioruberin regulates membrane fluidity in pink-pigmented Arthrobacter species. Arch Microbiol, 2021, 204(1): 70.

[17]

Flegler A, Lipski A. Engineered CRISPR/Cas9 system for transcriptional gene silencing in arthrobacter species indicates bacterioruberin is indispensable for growth at low temperatures. Curr Microbiol, 2022, 79(7): 199.

[18]

Flegler A, Lipski A. The C50 carotenoid bacterioruberin regulates membrane fluidity in pink-pigmented Arthrobacter species. Arch Microbiol, 2022, 204(1): 1-6.

[19]

Flegler A, Runzheimer K, Kombeitz V, Mänz AT, Heidler von Heilborn D, Etzbach L, . Arthrobacter bussei sp. nov., a pink-coloured organism isolated from cheese made of cow’s milk. Int J Syst Evol Microbiol, 2020, 70(5): 3027-3036.

[20]

Fong N, Burgess M, Barrow K, Glenn D. Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol, 2001, 56: 750-756.

[21]

Fong N, Burgess M, Barrow K, Glenn D. Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol, 2001, 56(5): 750-756.

[22]

Galasso C, Corinaldesi C, Sansone C. Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants, 2017, 6(4): 96.

[23]

Giani M, Garbayo I, Vílchez C, Martínez-Espinosa RM. Haloarchaeal carotenoids: healthy novel compounds from extreme environments. Mar Drugs, 2019, 17(9): 524.

[24]

Guleria S, Zhou J, Koffas MA (2017) Nutraceuticals (vitamin C, carotenoids, resveratrol). Industrial biotechnology: products and processes. pp 309–36. https://doi.org/10.1002/9783527807833.ch10

[25]

Gupta I, Adin SN, Panda BP, Mujeeb M. β-Carotene—production methods, biosynthesis from Phaffia rhodozyma, factors affecting its production during fermentation, pharmacological properties: a review. Biotechnol Appl Biochem, 2022

[26]

Hou J, Cui H-L. In vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from Halophilic archaea. Curr Microbiol, 2018, 75: 266-271.

[27]

Jaswir I, Noviendri D, Hasrini RF, Octavianti F. Carotenoids: sources, medicinal properties and their application in food and nutraceutical industry. J Med Plants Res, 2011, 5(33): 7119-7131.

[28]

Jehlička J, Oren A. Raman spectroscopy in halophile research. Front Microbiol, 2013, 4: 380.

[29]

Jiménez-Escrig A, Jiménez-Jiménez I, Sánchez-Moreno C, Saura-Calixto F. Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2, 2-diphenyl-1-picrylhydrazyl. J Sci Food Agric, 2000, 80(11): 1686-1690.

[30]

Jin Q, Yang L, Poe N, Huang H. Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends Food Sci Technol, 2018, 74: 119-131.

[31]

Liaaen-Jensen S, Jensen A (1971) [56] Quantitative determination of carotenoids in photosynthetic tissues. Methods in enzymology. p 586–602. https://doi.org/10.1016/S0076-6879(71)23132-3

[32]

Lin TF, Demain AL. Effect of nutrition of Monascus sp. on formation of red pigments. Appl Microbiol Biotechnol, 1991, 36: 70-75.

[33]

Maia LF, De Oliveira VE, Edwards HGM, De Oliveira LFC. The diversity of linear conjugated polyenes and colours in nature: Raman spectroscopy as a diagnostic tool. ChemPhysChem, 2021, 22(3): 231-249.

[34]

Matsushita Y, Suzuki R, Nara E, Yokoyama A, Miyashita K. Antioxidant activity of polar carotenoids including astaxanthin-β-glucoside from marine bacterium on PC liposomes. Fish Sci, 2000, 66(5): 980-985.

[35]

Mohamed HE, van de Meene AM, Roberson RW, Vermaas WF. Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol, 2005, 187(20): 6883-6892.

[36]

Montero-Lobato Z, Ramos-Merchante A, Fuentes JL, Sayago A, Fernández-Recamales Á, Martínez-Espinosa RM, . Optimization of growth and carotenoid production by Haloferax mediterranei using response surface methodology. Mar Drugs, 2018, 16(10): 372.

[37]

Mrowicka M, Mrowicki J, Kucharska E, Majsterek I. Lutein and zeaxanthin and their roles in age-related macular degeneration—neurodegenerative disease. Nutrients, 2022, 14(4): 827.

[38]

Mussagy CU, Winterburn J, Santos-Ebinuma VC, Pereira JFB. Production and extraction of carotenoids produced by microorganisms. Appl Microbiol Biotechnol, 2019, 103(3): 1095-1114.

[39]

Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res, 2010, 302(2): 71-83.

[40]

Polyakov NE, Leshina TV, Meteleva ES, Dushkin AV, Konovalova TA, Kispert LD. Water soluble complexes of carotenoids with arabinogalactan. J Phys Chem B, 2009, 113(1): 275-282.

[41]

Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM. Carotenoids from Haloarchaea and their potential in biotechnology. Mar Drugs, 2015, 13(9): 5508-5532.

[42]

Roukas T, Varzakakou M, Kotzekidou P. From cheese whey to carotenes by Blakeslea trispora in a bubble column reactor. Appl Biochem Biotechnol, 2015, 175(1): 182-193.

[43]

Saito T, Miyabe Y, Ide H, Yamamoto O. Hydroxyl radical scavenging ability of bacterioruberin. Radiat Phys Chem, 1997, 50(3): 267-269.

[44]

Seel W, Baust D, Sons D, Albers M, Etzbach L, Fuss J, . Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus. Sci Rep, 2020, 10(1): 1-12.

[45]

Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, . Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res, 1998, 39(4): 251-262.

[46]

Silva TRe, Silva LCF, de Queiroz AC, Alexandre Moreira MS, de Carvalho Fraga CA, de Menezes GCA, et al. Pigments from Antarctic bacteria and their biotechnological applications. Crit Rev Biotechnol. 2021;41(6):809–26.

[47]

Singh OV, Gabani P. Extremophiles: radiation resistance microbial reserves and therapeutic implications. J Appl Microbiol, 2011, 110(4): 851-861.

[48]

Smithers GW. Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J, 2008, 18(7): 695-704.

[49]

Squillaci G, Parrella R, Carbone V, Minasi P, La Cara F, Morana A. Carotenoids from the extreme halophilic archaeon Haloterrigena turkmenica: identification and antioxidant activity. Extremophiles, 2017, 21(5): 933-945.

[50]

Suleman M, Khan A, Baqi A, Kakar MS, Ayub M. 2. Antioxidants, its role in preventing free radicals and infectious diseases in human body. Pure Appl Biol, 2019, 8(1): 380-388.

[51]

Sutthiwong N, Fouillaud M, Valla A, Caro Y, Dufossé L. Bacteria belonging to the extremely versatile genus Arthrobacter as novel source of natural pigments with extended hue range. Food Res Int, 2014, 65: 156-162.

[52]

Thanapimmetha A, Suwaleerat T, Saisriyoot M, Chisti Y, Srinophakun P. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture. Bioprocess Biosyst Eng, 2017, 40: 133-143.

[53]

Torpee S, Kantachote D, Sukhoom A, Tantirungkij M. Culture optimization to enhance carotenoid production of a selected purple nonsulfur bacterium and its activity against acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus. Biotechnol Appl Biochem, 2022, 69(6): 2422-2436.

[54]

Usmani Z, Sharma M, Sudheer S, Gupta VK, Bhat R. Engineered microbes for pigment production using waste biomass. Curr Genomics, 2020, 21(2): 80-95.

[55]

Valduga E, Rausch Ribeiro AH, Cence K, Colet R, Tiggemann L, Zeni J, . Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agroindustrial substrates. Biocatal Agric Biotechnol, 2014, 3(2): 207-213.

[56]

van Breemen RB. Liquid chromatography/mass spectrometry of carotenoids. Pure Appl Chem, 1997, 69(10): 2061-2066.

[57]

Várkonyi Z, Masamoto K, Debreczeny M, Zsiros O, Ughy B, Gombos Z, . Low-temperature-induced accumulation of xanthophylls and its structural consequences in the photosynthetic membranes of the cyanobacterium Cylindrospermopsis raciborskiian FTIR spectroscopic study. Proc Natl Acad Sci, 2002, 99(4): 2410-2415.

[58]

Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S, . Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J Bacteriol, 2015, 197(9): 1614-1623.

[59]

Yatsunami R, Ando A, Yang Y, Takaichi S, Kohno M, Matsumura Y, . Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front Microbiol, 2014, 5: 100.

[60]

Yusuf M, Shabbir M, Mohammad F. Natural colorants: historical, processing and sustainable prospects. Nat Prod Bioprospect, 2017, 7(1): 123-145.

[61]

Zotta T, Solieri L, Iacumin L, Picozzi C, Gullo M. Valorization of cheese whey using microbial fermentations. Appl Microbiol Biotechnol, 2020, 104(7): 2749-2764.

Funding

Alexandria University

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/