Different photosynthetic responses of haploid and diploid Emiliania huxleyi (Prymnesiophyceae) to high light and ultraviolet radiation

Zuoxi Ruan , Meifang Lu , Hongmin Lin , Shanwen Chen , Ping Li , Weizhou Chen , Huijuan Xu , Dajun Qiu

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 40

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 40 DOI: 10.1186/s40643-023-00660-5
Research

Different photosynthetic responses of haploid and diploid Emiliania huxleyi (Prymnesiophyceae) to high light and ultraviolet radiation

Author information +
History +
PDF

Abstract

Abstract

Solar radiation varies quantitatively and qualitatively while penetrating through the seawater column and thus is one of the most important environmental factors shaping the vertical distribution pattern of phytoplankton. The haploid and diploid life-cycle phases of coccolithophores might have different vertical distribution preferences. Therefore, the two phases respond differently to high solar photosynthetically active radiation (PAR, 400–700 nm) and ultraviolet radiation (UVR, 280–400 nm). To test this, the haploid and diploid Emiliania huxleyi were exposed to oversaturating irradiance. In the presence of PAR alone, the effective quantum yield was reduced by 10% more due to the higher damage rate of photosystem II in haploid cells than in diploid cells. The addition of UVR resulted in further inhibition of the quantum yield for both haploid and diploid cells in the first 25 min, partly because of the increased damage of photosystem II. Intriguingly, this UVR-induced inhibition of the haploid cells completely recovered half an hour later. This recovery was confirmed by the comparable maximum quantum yields, maximum relative electron transport rates and yields of the haploid cells treated with PAR and PAR + UVR. Our data indicated that photosynthesis of the haploid phase was more sensitive to high visible light than the diploid phase but resistant to UVR-induced inhibition, reflecting the ecological niches to which this species adapts.

Keywords

Emiliania huxleyi / Diploid phase / Haploid phase / Effective quantum yield / Ultraviolet radiation (UVR)

Cite this article

Download citation ▾
Zuoxi Ruan, Meifang Lu, Hongmin Lin, Shanwen Chen, Ping Li, Weizhou Chen, Huijuan Xu, Dajun Qiu. Different photosynthetic responses of haploid and diploid Emiliania huxleyi (Prymnesiophyceae) to high light and ultraviolet radiation. Bioresources and Bioprocessing, 2023, 10(1): 40 DOI:10.1186/s40643-023-00660-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexander H, Rouco M, Haley ST, Dyhrman ST. Transcriptional response of Emiliania huxleyi under changing nutrient environments in the North Pacific Subtropical Gyre. Environ Microbiol, 2020, 22: 1847-1860.

[2]

Allorent G, Lefebvre-Legendre L, Chappuis R, Kuntz M, Truong TB, Niyogi KK, Ulm R, Goldschmidt-Clermont M. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A, 2016, 113: 14864-14869.

[3]

Anning T, Nimer N, Merrett M, Brownlee C. Costs and benefits of calcification in coccolithophorids. J Mar Syst, 1996, 9: 45-56.

[4]

Balch W, Drapeau D, Bowler B, Booth E. Prediction of pelagic calcification rates using satellite measurements. Deep Sea Res (II Top Stud Oceanogr), 2007, 54: 478-495.

[5]

Boelen P, Obernostere I, Vink AA, Buma AG. Attenuation of biologically effective UV radiation in tropical Atlantic waters measured with a biochemical DNA dosimeter. Photochem Photobiol, 1999, 69: 34-40.

[6]

Brown CW, Yoder JA. Coccolithophorid blooms in the global ocean. J Geophys Res (c Oceans), 1994, 99: 7467-7482.

[7]

Brownlee C, Langer G, Wheeler GL. Coccolithophore calcification: changing paradigms in changing oceans. Acta Biomater, 2021, 120: 4-11.

[8]

Buma AG, Van Oijen T, Van De Poll W, Veldhuis MJ, Gieskes WW. The sensitivity of Emiliania huxleyi (Prymnesiophyceae) to ultraviolet-B radiation. J Phycol, 2000, 36: 296-303.

[9]

D'Amario B, Ziveri P, Grelaud M, Oviedo A, Kralj M. Coccolithophore haploid and diploid distribution patterns in the Mediterranean Sea: can a haplo-diploid life cycle be advantageous under climate change?. J Plankton Res, 2017, 39: 781-794.

[10]

de Vries J, Monteiro F, Wheeler G, Poulton A, Godrijan J, Cerino F, Malinverno E, Langer G and Brownlee C (2020) The haplo-diplontic life cycle expands niche space of coccolithophores. Biogeosci Disc: 1–39.

[11]

Falkowski PG, Raven JA (1997) Light absorption and energy transfer in the photosynthetic apparatus. In: Falkowski PG, Raven JA (eds). Aquatic photosynthesis. Blackwell Science, Malden MA. Princeton University Press, Princeton, pp 33–64

[12]

Fanesi A, Raven JA, Giordano M. Growth rate affects the responses of the green alga Tetraselmis suecica to external perturbations. Plant, Cell Environ, 2014, 37: 512-519.

[13]

Foyer CH, Harbinson J. Frank HA, Young AJ, Britton G, Cogdell RJ. Relationships between antioxidant metabolism and carotenoids in the regulation of photosynthesis. The photochemistry of carotenoids, 1999, London: Kluwer Academic Pulishers, 305-325.

[14]

Frada M, Vardi A. Morphological switch to a resistant subpopulation in response to viral infection in a bloom-forming marine microalgae. PLoS Path, 2017, 13.

[15]

Frada M, Probert I, Allen MJ, Wilson WH, de Vargas C. The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proc Natl Acad Sci, 2008, 105: 15944-15949.

[16]

Frada MJ, Bidle KD, Probert I, de Vargas C. In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environ Microbiol, 2012, 14: 1558-1569.

[17]

Gao K, Ruan Z, Villafane VE, Gattuso J-P, Helbling EW. Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnol Oceanogr, 2009, 54: 1855-1862.

[18]

Giovagnetti V, Ruban AV. The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes. Biochem Soc Trans, 2018, 46: 1263-1277.

[19]

Goss R, Lepetit B. Biodiversity of NPQ. J Plant Physiol, 2015, 172: 13-32.

[20]

Green J, Course P, Tarran G. The life-cycle of Emiliania huxleyi: a brief review and a study of relative ploidy levels analysed by flow cytometry. J Mar Syst, 1996, 9: 33-44.

[21]

Guan W, Gao K. Enhanced calcification ameliorates the negative effects of UV radiation on photosynthesis in the calcifying phytoplankter Emiliania huxleyi. Chin Sci Bull, 2010, 55: 588-593.

[22]

Guan W, Gao K. Impacts of UV radiation on photosynthesis and growth of the coccolithophore Emiliania huxleyi (Haptophyceae). Environ Exp Bot, 2010, 67: 502-508.

[23]

Haney AM, Sanfilippo JE, Garczarek L, Partensky F, Kehoe DM. Multiple photolyases protect the marine cyanobacterium Synechococcus from ultraviolet radiation. Mbio, 2022, 13: e01511-e1522.

[24]

Heraud P, Beardall J. Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes. Photosynthesis Res, 2000, 63: 123-134.

[25]

Holligan PM, Fernández E, Aiken J, Balch WM, Boyd P, Burkill PH, Finch M, Groom SB, Malin G, Muller K. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochem Cycles, 1993, 7: 879-900.

[26]

Houdan A, Probert I, Van Lenning K, Lefebvre S. Comparison of photosynthetic responses in diploid and haploid life-cycle phases of Emiliania huxleyi (Prymnesiophyceae). Mar Ecol Prog Ser, 2005, 292: 139-146.

[27]

Jeffrey S, Humphrey G. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz, 1975, 167: 191-194.

[28]

Jin P, Gao K, Villafañe VE, Campbell DA, Helbling W. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating UV and visible radiation. Plant Physiol, 2013, 162: 2084-2094.

[29]

Jin P, Wan J, Zhang J, Overmans S, Xiao M, Ye M, Dai X, Zhao J, Gao K, Xia J. Additive impacts of ocean acidification and ambient ultraviolet radiation threaten calcifying marine primary producers. Sci Total Environ, 2022, 818.

[30]

Kayano K, Shiraiwa Y. Physiological regulation of coccolith polysaccharide production by phosphate availability in the coccolithophorid Emiliania huxleyi. Plant Cell Physiol, 2009, 50: 1522-1531.

[31]

Kayano K, Saruwatari K, Kogure T, Shiraiwa Y. Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization. Mar Biotechnol, 2011, 13: 83-92.

[32]

Kok B. On the inhibition of photosynthesis by intense light. Biochimica Et Aiophysica Acta, 1956, 21: 234-244.

[33]

Leunert F, Eckert W, Paul A, Gerhardt V, Grossart H-P. Phytoplankton response to UV-generated hydrogen peroxide from natural organic matter. J Plankton Res, 2014, 36: 185-197.

[34]

Leverenz RL, Sutter M, Wilson A, Gupta S, Thurotte A, de Carbon CB, Petzold CJ, Ralston C, Perreau F, Kirilovsky D. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science, 2015, 348: 1463-1466.

[35]

Lorenzo MR, Neale PJ, Sobrino C, León P, Vázquez V, Bresnan E, Segovia M. Effects of elevated CO2 on growth, calcification, and spectral dependence of photoinhibition in the coccolithophore Emiliania huxleyi (Prymnesiophyceae). J Phycol, 2019, 55: 775-788.

[36]

Mausz MA, Pohnert G. Phenotypic diversity of diploid and haploid Emiliania huxleyi cells and of cells in different growth phases revealed by comparative metabolomics. J Plant Physiol, 2015, 172: 137-148.

[37]

Monteiro FM, Bach LT, Brownlee C, Bown P, Rickaby RE, Poulton AJ, Tyrrell T, Beaufort L, Dutkiewicz S, Gibbs S. Why marine phytoplankton calcify. Sci Adv, 2016, 2.

[38]

Nanninga H, Tyrrell T. Importance of light for the formation of algal blooms by Emiliania huxleyi. Mar Ecol Prog Ser, 1996, 136: 195-203.

[39]

Pozdnyakov DV, Gnatiuk NV, Davy R, Bobylev LP. The phenomenon of Emiliania huxleyi in aspects of global climate and the ecology of the world ocean. Geogr Environ Sustain, 2021, 14: 50-62.

[40]

Ramos JB, Schulz KG, Febiri S, Riebesell U. Photoacclimation to abrupt changes in light intensity by Phaeodactylum tricornutum and Emiliania huxleyi: the role of calcification. Mar Ecol Prog Ser, 2012, 452: 11-26.

[41]

Rokitta SD, Rost B. Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnol Oceanogr, 2012, 57: 607-618.

[42]

Rokitta SD, de Nooijer LJ, Trimborn S, de Vargas C, Rost B, John U. Transcriptome analyses reveal differential gene expression patterns between the life-cycle stages of Emiliania huxleyi (haptophyta) and reflect specialization to different ecological niches. J Phycol, 2011, 47: 829-838.

[43]

Rokitta SD, John U, Rost B. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi. PLoS ONE, 2012, 7.

[44]

Ruan Z, Giordano M. The use of NH4 + rather than NO3 - affects cell stoichiometry, C allocation, photosynthesis and growth in the cyanobacterium Synechococcus sp. UTEX LB 2380, only when energy is limiting. Plant, Cell Environ, 2017, 40: 227-236.

[45]

Ruan Z, Zou D, Xu Z, Deng Y, Wang T, Huang F, Luo L. Coccosphere relieves the stress of ultraviolet radiation on photosynthesis in the coccolithophorid Emiliania huxleyi. Acta Hydrobiol Sin, 2016, 40: 1078-1082.

[46]

Ruan Z, Prášil O, Giordano M. The phycobilisomes of Synechococcus sp. are constructed to minimize nitrogen use in nitrogen-limited cells and to maximize energy capture in energy-limited cells. Environ Exp Bot, 2018, 150: 152-160.

[47]

Schreiber U, Endo T, Mi H, Asada K. Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol, 1995, 36: 873-882.

[48]

Shi D, Zhuang K, Chen Y, Xu F, Hu Z, Shen Z. Effects of excess ammoniacal nitrogen (NH4 +-N) on pigments, photosynthetic rates, chloroplast ultrastructure, proteomics, formation of reactive oxygen species and enzymatic activity in submerged plant Hydrilla verticillata (Lf) Royle. Aquat Toxicol, 2020, 226.

[49]

Sinha RP, Häder D-P. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci, 2002, 1: 225-236.

[50]

Strickland JDH, Parsons TR. A practical handbook of seawater analysis. Bull Fisheries Res Board Canada, 1972, 167: 310.

[51]

Tilbrook K, Dubois M, Crocco CD, Yin R, Chappuis R, Allorent G, Schmid-Siegert E, Goldschmidt-Clermont M, Ulm R. UV-B perception and acclimation in Chlamydomonas reinhardtii. Plant Cell, 2016, 28: 966-983.

[52]

Tokutsu R, Fujimura-Kamada K, Yamasaki T, Okajima K, Minagawa J. UV-A/B radiation rapidly activates photoprotective mechanisms in Chlamydomonas reinhardtii. Plant Physiol, 2021, 185: 1894-1902.

[53]

Tyrrell T, Merico A. Thierstein HR, Young JR. Emiliania huxleyi: bloom observations and the conditions that induce them. Coccolithophores: from molecular processes to global impact, 2004, Berlin: Springer, 75-97.

[54]

van Rijssel M, Buma AG. UV radiation induced stress does not affect DMSP synthesis in the marine prymnesiophyte Emiliania huxleyi. Aquat Microb Ecol, 2002, 28: 167-174.

[55]

Vázquez V, León P, Gordillo FJ, Jiménez C, Concepción I, Mackenzie K, Bresnan E and Segovia M (2022) High-CO2 levels rather than acidification restrict Emiliania huxleyi growth and performance. Microb Ecol: 1–17.

[56]

Wang Y, Wang L, Guan Z, Chang H, Ma L, Shen C, Qiu L, Yan J, Zhang D, Li J. Structural insight into UV-B–activated UVR8 bound to COP1. Sci Adv, 2022, 8: eabn3337.

[57]

Webb WL, Newton M, Starr D. Carbon dioxide exchange of Alnus rubra. Oecologia, 1974, 14: 281-291.

[58]

Xi Y, Bian J, Luo G, Kong F, Chi Z. Enhanced β-carotene production in Dunaliella salina under relative high flashing light. Algal Res, 2022, 67.

[59]

Xing T, Gao K, Beardall J. Response of growth and photosynthesis of Emiliania huxleyi to visible and UV irradiances under different light regimes. Photochem Photobiol, 2015, 91: 343-349.

[60]

Xu K, Gao K, Villafañe V, Helbling E. Photosynthetic responses of Emiliania huxleyi to UV radiation and elevated temperature: roles of calcified coccoliths. Biogeosciences, 2011, 8: 1441-1452.

[61]

Xu J, Bach LT, Schulz KG, Zhao W, Gao K, Riebesell U. The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation. Biogeosciences, 2016, 13: 4637-4643.

[62]

Zang S, Xu Z, Yan F, Wu H. Elevated CO2 modulates the physiological responses of Thalassiosira pseudonana to ultraviolet radiation. J Photochem Photobiol B: Biol, 2022, 236.

[63]

Zhang Y, Gao K. Photosynthesis and calcification of the coccolithophore Emiliania huxleyi are more sensitive to changed levels of light and CO2 under nutrient limitation. J Photochem Photobiol b: Biol, 2021, 217.

[64]

Zondervan I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—a review. Deep Sea Res (II Top Stud Oceanogr), 2007, 54: 521-537.

Funding

National Natural Science Foundation of China(42076206)

National Key Research and Development Program(2019YFB1503904)

Natural Science Foundation of Guangdong Province(2020A1515011073)

Department of Science and Technology of Guangdong Province(2021B1212050025)

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/