Hydroxylases involved in terpenoid biosynthesis: a review

Zihan Zhang , Qing-Yang Wu , Yue Ge , Zheng-Yu Huang , Ran Hong , Aitao Li , Jian-He Xu , Hui-Lei Yu

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 39

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 39 DOI: 10.1186/s40643-023-00656-1
Review

Hydroxylases involved in terpenoid biosynthesis: a review

Author information +
History +
PDF

Abstract

Terpenoids are pervasive in nature and display an immense structural diversity. As the largest category of plant secondary metabolites, terpenoids have important socioeconomic value in the fields of pharmaceuticals, spices, and food manufacturing. The biosynthesis of terpenoid skeletons has made great progress, but the subsequent modifications of the terpenoid framework are poorly understood, especially for the functionalization of inert carbon skeleton usually catalyzed by hydroxylases. Hydroxylase is a class of enzymes that plays an important role in the modification of terpenoid backbone. This review article outlines the research progress in the identification, molecular modification, and functional expression of this class of enzymes in the past decade, which are profitable for the discovery, engineering, and application of more hydroxylases involved in the plant secondary metabolism.

Keywords

Biooxidation / Cytochrome P450 monooxygenase / Hydroxylase / Natural products / Terpenoids

Cite this article

Download citation ▾
Zihan Zhang, Qing-Yang Wu, Yue Ge, Zheng-Yu Huang, Ran Hong, Aitao Li, Jian-He Xu, Hui-Lei Yu. Hydroxylases involved in terpenoid biosynthesis: a review. Bioresources and Bioprocessing, 2023, 10(1): 39 DOI:10.1186/s40643-023-00656-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330: 70-74.

[2]

Andre CM, Legay S, Deleruelle A, Nieuwenhuizen N, Punter M, Brendolise C, Cooney JM, Lateur M, Hausman JF, Larondelle Y, Laing WA. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids. New Phytol, 2016, 211: 1279-1294.

[3]

Behrendorff JB, Gillam EM. Prospects for applying synthetic biology to toxicology: future opportunities and current limitations for the repurposing of cytochrome P450 systems. Chem Res Toxicol, 2017, 30: 453-468.

[4]

Besseau S, Kellner F, Lanoue A, Thamm AM, Salim V, Schneider B, Geu-Flores F, Hofer R, Guirimand G, Guihur A, Oudin A, Glevarec G, Foureau E, Papon N, Clastre M, Giglioli-Guivarc'h N, St-Pierre B, Werck-Reichhart D, Burlat V, De Luca V, O'Connor SE, Courdavault V. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiol, 2013, 163: 1792-1803.

[5]

Boutanaev AM, Moses T, Zi J, Nelson DR, Mugford ST, Peters RJ, Osbourn A. Investigation of terpene diversification across multiple sequenced plant genomes. Proc Natl Acad Sci USA, 2015, 112: E81-E88.

[6]

Bozic D, Papaefthimiou D, Bruckner K, de Vos RC, Tsoleridis CA, Katsarou D, Papanikolaou A, Pateraki I, Chatzopoulou FM, Dimitriadou E, Kostas S, Manzano D, Scheler U, Ferrer A, Tissier A, Makris AM, Kampranis SC, Kanellis AK. Towards elucidating carnosic acid biosynthesis in Lamiaceae: functional characterization of the three first steps of the pathway in Salvia fruticosa and Rosmarinus officinalis. PLoS ONE, 2015, 10.

[7]

Cankar K, van Houwelingen A, Bosch D, Sonke T, Bouwmeester H, Beekwilder J. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett, 2011, 585: 178-182.

[8]

Chacon-Morales PA. Unprecedented diterpene skeletons isolated from vascular plants in the last twenty years (2001–2021). Phytochemistry, 2022, 204.

[9]

Chang MCY, Eachus RA, Trieu W, Ro DK, Keasling JD. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol, 2007, 3: 274-277.

[10]

Chau M, Croteau RB. Molecular cloning and characterization of a cytochrome P450 taxoid 2alpha-hydroxylase involved in taxol biosynthesis. Arch Biochem Biophys, 2004, 427: 48-57.

[11]

Chau M, Jennewein S, Walker K, Croteau RB. Taxol biosynthesis: molecular cloning and characterization of a cytochrome P450 taxoid 7 beta-hydroxylase. Chem Biol, 2004, 11: 663-672.

[12]

Chen CC, Malwal SR, Han X, Liu W, Ma L, Zhai C, Dai L, Huang JW, Shillo A, Desai J, Ma X, Zhang Y, Guo RT, Oldfield E. Terpene cyclases and prenyltransferases: structures and mechanisms of action. ACS Catal, 2020, 11: 290-303.

[13]

Chien TY, Huang SK, Lee CJ, Tsai PW, Wang CC. Antinociceptive and anti-inflammatory effects of zerumbone against mono-iodoacetate-induced arthritis. Int J Mol Sci, 2016, 17: 249.

[14]

Chiu CC, Keeling CI, Bohlmann J. The cytochrome P450 CYP6DE1 catalyzes the conversion of alpha-pinene into the mountain pine beetle aggregation pheromone trans-verbenol. Sci Rep, 2019, 9: 1477.

[15]

Chiu CC, Keeling CI, Henderson HM, Bohlmann J. Functions of mountain pine beetle cytochromes P450 CYP6DJ1, CYP6BW1 and CYP6BW3 in the oxidation of pine monoterpenes and diterpene resin acids. PLoS ONE, 2019, 14.

[16]

Corinna W, Henrik TS. Cytochrome P450-enzymes involved in the biosynthesis of mono- and sesquiterpenes. Phytochem Rev, 2013, 14: 7-24.

[17]

Edgar S, Li FS, Qiao KJ, Weng JK, Stephanopoulos G. Engineering of taxadiene synthase for improved selectivity and yield of a key taxol biosynthetic intermediate. ACS Synth Biol, 2017, 6: 201-205.

[18]

Eljounaidi K, Cankar K, Comino C, Moglia A, Hehn A, Bourgaud F, Bouwmeester H, Menin B, Lanteri S, Beekwilder J. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. Plant Sci, 2014, 223: 59-68.

[19]

Fatima K, Naqvi F, Younas H. A review: molecular chaperone-mediated folding, unfolding and disaggregation of expressed recombinant proteins. Cell Biochem Biophys, 2021, 79: 153-174.

[20]

Fu N, Yang ZL, Pauchet Y, Paetz C, Brandt W, Boland W, Burse A. A cytochrome P450 from the mustard leaf beetles hydroxylates geraniol, a key step in iridoid biosynthesis. Insect Biochem Mol Biol, 2019, 113.

[21]

Fukushima EO, Seki H, Ohyama K, Ono E, Umemoto N, Mizutani M, Saito K, Muranaka T. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol, 2011, 52: 2050-2061.

[22]

Fukushima EO, Seki H, Sawai S, Suzuki M, Ohyama K, Saito K, Muranaka T. Combinatorial biosynthesis of legume natural and rare triterpenoids in engineered yeast. Plant Cell Physiol, 2013, 54: 740-749.

[23]

Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell, 2006, 18: 1947-1960.

[24]

Gavira C, Hofer R, Lesot A, Lambert F, Zucca J, Werck-Reichhart D. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae. Metab Eng, 2013, 18: 25-35.

[25]

Geisler K, Hughes RK, Sainsbury F, Lomonossoff GP, Rejzek M, Fairhurst S, Olsen CE, Motawia MS, Melton RE, Hemmings AM, Bak S, Osbourn A. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc Natl Acad Sci USA, 2013, 110: e3360-3367.

[26]

Gesell A, Blaukopf M, Madilao L, Yuen MM, Withers SG, Mattsson J, Russell JH, Bohlmann J. The gymnosperm cytochrome P450 CYP750B1 catalyzes stereospecific monoterpene hydroxylation of (+)-sabinene in thujone biosynthesis in western redcedar. Plant Physiol, 2015, 168: 94-106.

[27]

Giddings LA, Liscombe DK, Hamilton JP, Childs KL, DellaPenna D, Buell CR, O'Connor SE. A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus. J Biol Chem, 2011, 286: 16751-16757.

[28]

Ginglinger JF, Boachon B, Hofer R, Paetz C, Kollner TG, Miesch L, Lugan R, Baltenweck R, Mutterer J, Ullmann P, Beran F, Claudel P, Verstappen F, Fischer MJ, Karst F, Bouwmeester H, Miesch M, Schneider B, Gershenzon J, Ehlting J, Werck-Reichhart D. Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers. Plant Cell, 2013, 25: 4640-4657.

[29]

Girhard M, Klaus T, Khatri Y, Bernhardt R, Urlacher VB. Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis. Appl Microbiol Biotechnol, 2010, 87: 595-607.

[30]

Guo J, Ma X, Cai Y, Ma Y, Zhan Z, Zhou YJ, Liu W, Guan M, Yang J, Cui G, Kang L, Yang L, Shen Y, Tang J, Lin H, Ma X, Jin B, Liu Z, Peters RJ, Zhao ZK, Huang L. Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones. New Phytol, 2016, 210: 525-534.

[31]

Hamberger B, Ohnishi T, Hamberger B, Seguin A, Bohlmann J. Evolution of diterpene metabolism: sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol, 2011, 157: 1677-1695.

[32]

Han JY, Kim HJ, Kwon YS, Choi YE. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol, 2011, 52: 2062-2073.

[33]

Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol, 2012, 53: 1535-1545.

[34]

Han JY, Kim MJ, Ban YW, Hwang HS, Choi YE. The involvement of beta-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol, 2013, 54: 2034-2046.

[35]

Han JY, Chun JH, Oh SA, Park SB, Hwang HS, Lee H, Choi YE. Transcriptomic analysis of kalopanax septemlobus and characterization of KsBAS, CYP716A94 and CYP72A397 genes involved in hederagenin saponin biosynthesis. Plant Cell Physiol, 2018, 59: 319-330.

[36]

Helliwell CA, Poole A, James Peacock W, Dennis ES. Arabidopsis ent-Kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol, 1999, 119: 507-510.

[37]

Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA, 2001, 98: 2065-2070.

[38]

Hofer R, Boachon B, Renault H, Gavira C, Miesch L, Iglesias J, Ginglinger JF, Allouche L, Miesch M, Grec S, Larbat R, Werck-Reichhart D. Dual function of the cytochrome P450 CYP76 family from Arabidopsis thaliana in the metabolism of monoterpenols and phenylurea herbicides. Plant Physiol, 2014, 166: 1149-1161.

[39]

Huang L, Li J, Ye H, Li C, Wang H, Liu B, Zhang Y. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Planta, 2012, 236: 1571-1581.

[40]

Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. Bioresour Bioprocess, 2021, 8: 66.

[41]

Ichinose H, Hatakeyama M, Yamauchi Y. Sequence modifications and heterologous expression of eukaryotic cytochromes P450 in Escherichia coli. J Biosci Bioeng, 2015, 120: 268-274.

[42]

Ikezawa N, Gopfert JC, Nguyen DT, Kim SU, O'Maille PE, Spring O, Ro DK. Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct regio- and stereoselective hydroxylations in sesquiterpene lactone metabolism. J Biol Chem, 2011, 286: 21601-21611.

[43]

Jennewein S, Rithner CD, Williams RM, Croteau RB. Taxol biosynthesis: taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA, 2001, 98: 13595-13600.

[44]

Jennewein S, Rithner CD, Williams RM, Croteau RB. Taxoid metabolism: taxoid 14β-hydroxylase is a cytochrome P450-dependent monooxygenase. Arch Biochem Biophys, 2003, 413: 262-270.

[45]

Jensen K, Møller BL. Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry, 2010, 71: 132-141.

[46]

Keeling CI, Henderson H, Li M, Dullat HK, Ohnishi T, Bohlmann J. CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, dendroctonus ponderosae hopkins, catalyses the oxidation of pine host monoterpene volatiles. Insect Biochem Mol Biol, 2013, 43: 1142-1151.

[47]

Kim J, DellaPenna D. Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid β-ring hydroxylase CYP97A3. Proc Natl Acad Sci USA, 2006, 103: 3474-3479.

[48]

Kim J, Smith JJ, Tian L, Dellapenna D. The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol, 2009, 50: 463-479.

[49]

Kim JE, Cheng KM, Craft NE, Hamberger B, Douglas CJ. Over-expression of Arabidopsis thaliana carotenoid hydroxylases individually and in combination with a beta-carotene ketolase provides insight into in vivo functions. Phytochemistry, 2010, 71: 168-178.

[50]

King AJ, Brown GD, Gilday AD, Larson TR, Graham IA. Production of bioactive diterpenoids in the euphorbiaceae depends on evolutionarily conserved gene clusters. Plant Cell, 2014, 26: 3286-3298.

[51]

Le-Huu P, Heidt T, Claasen B, Laschat S, Urlacher VB. Chemo-, regio-, and stereoselective oxidation of the monocyclic diterpenoid β-cembrenediol by P450 BM3. ACS Catal, 2015, 5: 1772-1780.

[52]

Le-Huu P, Petrović D, Strodel B, Urlacher VB. One-pot, two-step hydroxylation of the macrocyclic diterpenoid β-cembrenediol catalyzed by P450 BM3 mutants. ChemCatChem, 2016, 8: 3755-3761.

[53]

Li D, Ma Y, Zhou Y, Gou J, Zhong Y, Zhao L, Han L, Ovchinnikov S, Ma L, Huang S, Greisen P, Shang Y. A structural and data-driven approach to engineering a plant cytochrome P450 enzyme. Sci China Life Sci, 2019, 62: 873-882.

[54]

Linden H. Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. BBA-Gene Struct Expr, 1999, 1446: 203-212.

[55]

Maoka T. Carotenoids as natural functional pigments. J Nat Med, 2020, 74: 1-16.

[56]

Mau CJ, Karp F, Ito M, Honda G, Croteau RB. A candidate cDNA clone for (−)-limonene-7-hydroxylase from Perilla frutescens. Phytochemistry, 2010, 71: 373-379.

[57]

Misra RC, Sharma S, Sandeep Garg A, Chanotiya CS, Ghosh S. Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis. New Phytol, 2017, 214: 706-720.

[58]

Moses T, Pollier J, Almagro L, Buyst D, Van Montagu M, Pedreno MA, Martins JC, Thevelein JM, Goossens A. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16alpha hydroxylase from Bupleurum falcatum. Proc Natl Acad Sci USA, 2014, 111: 1634-1639.

[59]

Nadeau JA, Petereit J, Tillett RL, Jung K, Fotoohi M, MacLean M, Young S, Schlauch K, Blomquist GJ, Tittiger C. Comparative transcriptomics of mountain pine beetle pheromone-biosynthetic tissues and functional analysis of CYP6DE3. BMC Genom, 2017, 18: 311.

[60]

Nomura T, Magome H, Hanada A, Takeda-Kamiya N, Mander LN, Kamiya Y, Yamaguchi S. Functional analysis of Arabidopsis CYP714A1 and CYP714A2 reveals that they are distinct gibberellin modification enzymes. Plant Cell Physiol, 2013, 54: 1837-1851.

[61]

Paddon CJ, Keasling JD. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol, 2014, 12: 355-367.

[62]

Park SY, Eun H, Lee MH, Lee SY. Metabolic engineering of Escherichia coli with electron channelling for the production of natural products. Nat Catal, 2022, 5: 726-737.

[63]

Pompon D, Louerat B, Bronine A, Urban P. Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol, 1996, 272: 51-64.

[64]

Qi X, Bakht S, Qin B, Leggett M, Hemmings A, Mellon F, Eagles J, Werck-Reichhart D, Schaller H, Lesot A, Melton R, Osbourn A. A different function for a member of an ancient and highly conserved cytochrome P450 family: from essential sterols to plant defense. Proc Natl Acad Sci USA, 2006, 103: 18848-18853.

[65]

Qi DD, Jin J, Liu D, Jia B, Yuan YJ. In vitro and in vivo recombination of heterologous modules for improving biosynthesis of astaxanthin in yeast. Microb Cell Fact, 2020, 19(1): 103.

[66]

Quaderer R, Omura S, Ikeda H, Cane DE, Cane DE. Pentalenolactone biosynthesis. Molecular cloning and assignment of biochemical function to PtlI, a cytochrome P450 of Streptomyces avermitilis. J Am Chem Soc, 2006, 128: 13036-13037.

[67]

Quinlan RF, Jaradat TT, Wurtzel ET. Escherichia coli as a platform for functional expression of plant P450 carotene hydroxylases. Arch Biochem Biophys, 2007, 458: 146-157.

[68]

Ramirez AM, Saillard N, Yang T, Franssen MC, Bouwmeester HJ, Jongsma MA. Biosynthesis of sesquiterpene lactones in pyrethrum (Tanacetum cinerariifolium). PLoS ONE, 2013, 8.

[69]

Renata H. Synthetic utility of oxygenases in site-selective terpenoid functionalization. J Ind Microbiol Biotechnol, 2021

[70]

Rouck JE, Biggs BW, Kambalyal A, Arnold WR, De Mey M, Ajikumar PK, Das A. Heterologous expression and characterization of plant taxadiene-5alpha-hydroxylase (CYP725A4) in Escherichia coli. Protein Expr Purif, 2017, 132: 60-67.

[71]

Schalk M, Croteau RA. Single amino acid substitution (F363I) converts the regiochemistry of the spearmint (-)-limonene hydroxylase from a C6- to a C3-hydroxylase. Proc Natl Acad Sci U S A, 2000, 97: 11948-11953.

[72]

Scheler U, Brandt W, Porzel A, Rothe K, Manzano D, Bozic D, Papaefthimiou D, Balcke GU, Henning A, Lohse S, Marillonnet S, Kanellis AK, Ferrer A, Tissier A. Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast. Nat Commun, 2016, 7: 12942.

[73]

Schifrin A, Litzenburger M, Ringle M, Ly TT, Bernhardt R. New sesquiterpene oxidations with CYP260A1 and CYP264B1 from Sorangium cellulosum So ce56. ChemBioChem, 2015, 16: 2624-2632.

[74]

Schoendorf A, Rithner CD, Williams RM, Croteau RB. Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from taxus and functional expression in yeast. Proc Natl Acad Sci USA, 2001, 98: 1501-1506.

[75]

Schrepfer P, Ugur I, Klumpe S, Loll B, Kaila VRI, Bruck T. Exploring the catalytic cascade of cembranoid biosynthesis by combination of genetic engineering and molecular simulations. Comput Struct Biotechnol J, 2020, 18: 1819-1829.

[76]

Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T, Sudo H, Akashi T, Aoki T, Saito K, Muranaka T. Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc Natl Acad Sci USA, 2008, 105: 14204-14209.

[77]

Seki H, Sawai S, Ohyama K, Mizutani M, Ohnishi T, Sudo H, Fukushima EO, Akashi T, Aoki T, Saito K, Muranaka T. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell, 2011, 23: 4112-4123.

[78]

Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H, Zeng J, Zhou Q, Wang S, Gu W, Liu M, Ren J, Gu X, Zhang S, Wang Y, Yasukawa K, Bouwmeester HJ, Qi X, Zhang Z, Lucas WJ, Huang S. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 2014, 346: 1084-1088.

[79]

Shibuya M, Hoshino M, Katsube Y, Hayashi H, Kushiro T, Ebizuka Y. Identification of beta-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay. FEBS J, 2006, 273: 948-959.

[80]

Sintupachee S, Promden W, Ngamrojanavanich N, Sitthithaworn W, De-Eknamkul W. Functional expression of a putative geraniol 8-hydroxylase by reconstitution of bacterially expressed plant CYP76F45 and NADPH-cytochrome P450 reductase CPR I from Croton stellatopilosus Ohba. Phytochemistry, 2015, 118: 204-215.

[81]

Song M, Kim AC, Gorzalski AJ, MacLean M, Young S, Ginzel MD, Blomquist GJ, Tittiger C. Functional characterization of myrcene hydroxylases from two geographically distinct Ips pini populations. Insect Biochem Mol Biol, 2013, 43: 336-343.

[82]

Sun W, Xue H, Liu H, Lv B, Yu Y, Wang Y, Huang M, Li C. Controlling chemo- and regioselectivity of a plant P450 in yeast cell toward rare licorice triterpenoid biosynthesis. ACS Catal, 2020, 10: 4253-4260.

[83]

Takase H, Sasaki K, Shinmori H, Shinohara A, Mochizuki C, Kobayashi H, Ikoma G, Saito H, Matsuo H, Suzuki S, Takata R. Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (−)-rotundone. J Exp Bot, 2016, 67: 787-798.

[84]

Tamura K, Seki H, Suzuki H, Kojoma M, Saito K, Muranaka T. CYP716A179 functions as a triterpene C-28 oxidase in tissue-cultured stolons of Glycyrrhiza uralensis. Plant Cell Rep, 2017, 36: 437-445.

[85]

Tian L, DellaPenna D. Progress in understanding the origin and functions of carotenoid hydroxylases in plants. Arch Biochem Biophys, 2004, 430: 22-29.

[86]

Tzin V, Snyder JH, Yang DS, Huhman DV, Watson BS, Allen SN, Tang Y, Miettinen K, Arendt P, Pollier J, Goossens A, Sumner LW. Integrated metabolomics identifies CYP72A67 and CYP72A68 oxidases in the biosynthesis of Medicago truncatula oleanate sapogenins. Metabolomics, 2019, 15(6): 85.

[87]

van Beilen JB, Holtackers R, Luscher D, Bauer U, Witholt B, Duetz WA. Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol, 2005, 71: 1737-1744.

[88]

Walls LE, Malci K, Nowrouzi B, Li RA, d'Espaux L, Wong J, Dennis JA, Semiao AJC, Wallace S, Martinez JL, Keasling JD, Rios-Solis L. Optimizing the biosynthesis of oxygenated and acetylated taxol precursors in Saccharomyces cerevisiae using advanced bioprocessing strategies. Biotechnol Bioeng, 2021, 118: 279-293.

[89]

Walter RM, Zemella A, Schramm M, Kiebist J, Kubick S. Vesicle-based cell-free synthesis of short and long unspecific peroxygenases. Front Bioeng Biotechnol, 2022, 10.

[90]

Wang E, Wagner GJ. Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta, 2003, 216: 686-691.

[91]

Wang H, Han J, Kanagarajan S, Lundgren A, Brodelius PE. Trichome-specific expression of the amorpha-4,11-diene 12-hydroxylase (cyp71av1) gene, encoding a key enzyme of artemisinin biosynthesis in Artemisia annua, as reported by a promoter-GUS fusion. Plant Mol Biol, 2013, 81: 119-138.

[92]

Yadav VG. Unraveling the multispecificity and catalytic promiscuity of taxadiene monooxygenase. J Mol Catal B-Enzym, 2014, 110: 154-164.

[93]

Yang LE, Huang XQ, Hang Y, Deng YY, Lu QQ, Lu S. The P450-type carotene hydroxylase PuCHY1 from Porphyra suggests the evolution of carotenoid metabolism in red algae. J Integr Plant Biol, 2014, 56: 902-915.

[94]

Yasumoto S, Fukushima EO, Seki H, Muranaka T. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes. FEBS Lett, 2016, 590: 533-540.

[95]

Yasumoto S, Seki H, Shimizu Y, Fukushima EO, Muranaka T. Functional characterization of CYP716 family P450 enzymes in triterpenoid biosynthesis in tomato. Front Plant Sci, 2017, 8: 21.

[96]

Zhang N, Han ZT, Sun GL, Hoffman A, Wilson IW, Yang YF, Gao Q, Wu JQ, Xie D, Dai JG, Qiu DY. Molecular cloning and characterization of a cytochrome P450 taxoid 9á-hydroxylase in Ginkgo biloba cells. Biochem Biophys Res Commun, 2014, 443: 938-943.

[97]

Zhang J, Dai L, Yang J, Liu C, Men Y, Zeng Y, Cai Y, Zhu Y, Sun Y. Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol, 2016, 57: 1000-1007.

[98]

Zhang J, Hansen LG, Gudich O, Viehrig K, Lassen LMM, Schrubbers L, Adhikari KB, Rubaszka P, Carrasquer-Alvarez E, Chen L, D'Ambrosio V, Lehka B, Haidar AK, Nallapareddy S, Giannakou K, Laloux M, Arsovska D, Jorgensen MAK, Chan LJG, Kristensen M, Christensen HB, Sudarsan S, Stander EA, Baidoo E, Petzold CJ, Wulff T, O'Connor SE, Courdavault V, Jensen MK, Keasling JD. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature, 2022, 609: 341-347.

[99]

Zhao B, Lin X, Lei L, Lamb DC, Kelly SL, Waterman MR, Cane DE. Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J Biol Chem, 2008, 283: 8183-8189.

[100]

Zhao B, Lei L, Vassylyev DG, Lin X, Cane DE, Kelly SL, Yuan H, Lamb DC, Waterman MR. Crystal structure of albaflavenone monooxygenase containing a moonlighting terpene synthase active site. J Biol Chem, 2009, 284: 36711-36719.

[101]

Zhao S, Tuan PA, Kim JK, Park WT, Kim YB, Arasu MV, Al-Dhabi NA, Yang J, Li CH, Park SU. Molecular characterization of carotenoid biosynthetic genes and carotenoid accumulation in Lycium chinense. Molecules, 2014, 19: 11250-11262.

[102]

Zhou Y, Ma Y, Zeng J, Duan L, Xue X, Wang H, Lin T, Liu Z, Zeng K, Zhong Y, Zhang S, Hu Q, Liu M, Zhang H, Reed J, Moses T, Liu X, Huang P, Qing Z, Liu X, Tu P, Kuang H, Zhang Z, Osbourn A, Ro DK, Shang Y, Huang S. Convergence and divergence of bitterness biosynthesis and regulation in cucurbitaceae. Nat Plants, 2016, 2: 16183.

[103]

Zhu M, Wang C, Sun W, Zhou A, Wang Y, Zhang G, Zhou X, Huo Y, Li C. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metab Eng, 2018, 45: 43-50.

[104]

Zi J, Peters RJ. Characterization of CYP76AH4 clarifies phenolic diterpenoid biosynthesis in the lamiaceae. Org Biomol Chem, 2013, 11: 7650-7652.

[105]

Zwick CR, Renata H. Harnessing the biocatalytic potential of iron- and alpha-ketoglutarate-dependent dioxygenases in natural product total synthesis. Nat Prod Rep, 2020, 37: 1065-1079.

Funding

National Nature Science Foundation of China(21922804)

National Key Research and Development Program of China(2019YFA09005000)

Fundamental Research Funds for Central Universities of the Central South University(22221818014)

Program of Shanghai Academic Research Leader(21XD1400800)

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/