Construction of Cupriavidus necator displayed with superoxide dismutases for enhanced growth in bioelectrochemical systems

Ke Chen , Chunling Ma , Xiaolei Cheng , Yuhua Wang , Kun Guo , Ranran Wu , Zhiguang Zhu

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 36

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 36 DOI: 10.1186/s40643-023-00655-2
Research

Construction of Cupriavidus necator displayed with superoxide dismutases for enhanced growth in bioelectrochemical systems

Author information +
History +
PDF

Abstract

It is of great significance to utilize CO2 as feedstock to synthesize biobased products, particularly single cell protein (SCP) as the alternative food and feed. Bioelectrochemical system (BES) driven by clean electric energy has been regarded as a promising way for Cupriavidus necator to produce SCP from CO2 directly. At present, the key problem of culturing C. necator in BES is that reactive oxygen species (ROS) generated in cathode chamber are harmful to bacterial growth. Therefore, it is necessary to find a solution to mitigate the negative effect of ROS. In this study, we constructed a number of C. necator strains displayed with superoxide dismutase (SOD), which allowed the decomposition of superoxide anion radical. The effects of promoters and signal peptides on the cell surface displayed SOD were analyzed. The proteins displayed on the surface were further verified by the fluorescence experiment. Finally, the growth of C. necator CMS incorporating a pBAD-SOD-E-tag-IgAβ plasmid could achieve 4.9 ± 1.0 of OD600 by 7 days, equivalent to 1.7 ± 0.3 g/L dry cell weight (DCW), and the production rate was 0.24 ± 0.04 g/L/d DCW, around 2.7-fold increase than the original C. necator CMS (1.8 ± 0.3 of OD600). This study can provide an effective and novel strategy of cultivating strains for the production of CO2-derived SCP or other chemicals in BES.

Keywords

Carbon dioxide / Single cell protein / Bioelectrochemical system / Cell surface display / Hydrogen-oxidizing bacteria

Cite this article

Download citation ▾
Ke Chen, Chunling Ma, Xiaolei Cheng, Yuhua Wang, Kun Guo, Ranran Wu, Zhiguang Zhu. Construction of Cupriavidus necator displayed with superoxide dismutases for enhanced growth in bioelectrochemical systems. Bioresources and Bioprocessing, 2023, 10(1): 36 DOI:10.1186/s40643-023-00655-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beilharz K, Kragh KN, Fritz B, Kirkegaard JB, Tolker-Nielsen T, Bjarnsholt T, Lichtenberg M. Protocol to assess metabolic activity of Pseudomonas aeruginosa by measuring heat flow using isothermal calorimetry. STAR Protoc, 2023, 4: 102269.

[2]

Biondo R, da Silva FA, Vicente EJ, Souza Sarkis JE, Schenberg AC. Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation. Environ Sci Technol, 2012, 46: 8325-8332.

[3]

Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SP, Friedrich B. [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol, 2005, 10: 181-196.

[4]

Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev, 2013, 65: 1357-1369.

[5]

Cramm R. Genomic view of energy metabolism in Ralstonia eutropha H16. J Mol Microbiol Biotechnol, 2009, 16: 38-52.

[6]

Dong H, Nilsson L, Kurland CG. Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol, 1995, 177: 1497-1504.

[7]

Dou J, Huang Y, Ren H, Li Z, Cao Q, Liu X, Li D. Autotrophic, heterotrophic, and mixotrophic nitrogen assimilation for single-cell protein production by two hydrogen-oxidizing bacterial strains. Appl Biochem Biotechnol, 2019, 187: 338-351.

[8]

Earhart CF. Use of an Lpp-OmpA fusion vehicle for bacterial surface display. Methods Enzymol, 2000, 326: 506-516.

[9]

Etz H, Minh DB, Schellack C, Nagy E, Meinke A. Bacterial phage receptors, versatile tools for display of polypeptides on the cell surface. J Bacteriol, 2001, 183: 6924-6935.

[10]

Fan LH, Liu N, Yu MR, Yang ST, Chen HL. Cell surface display of carbonic anhydrase on Escherichia coli using ice nucleation protein for CO2 sequestration. Biotechnol Bioeng, 2011, 108: 2853-2864.

[11]

Guo J, Yang G, Zhuang Z, Mai Q, Zhuang L. Redox potential-induced regulation of extracellular polymeric substances in an electroactive mixed community biofilm. Sci Total Environ, 2021, 797: 149207.

[12]

Hanzhen G, Lingqian L, Qinsheng Y, Jian Z. A comparison between two methods for determination of SOD activity. Pharm Biotechnol, 2006, 13: 377-379.

[13]

Hu M, Xiong B, Li Z, Liu L, Li S, Zhang C, Zhang X, Bi C. A novel gene expression system for Ralstonia eutropha based on the T7 promoter. BMC Microbiol, 2020, 20: 121.

[14]

Hyeon JE, Kim SW, Park C, Han SO. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface. Chem Commun (camb), 2015, 51: 10202-10205.

[15]

Krieg T, Sydow A, Faust S, Huth I, Holtmann D. CO(2) to terpenes: autotrophic and electroautotrophic α-humulene production with Cupriavidus necator. Angew Chem Int Ed Engl, 2018, 57: 1879-1882.

[16]

Kunasundari B, Murugaiyah V, Kaur G, Maurer FH, Sudesh K. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously. PLoS ONE, 2013, 8: e78528.

[17]

Kurland CG, Dong H. Bacterial growth inhibition by overproduction of protein. Mol Microbiol, 1996, 21: 1-4.

[18]

Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC. Integrated electromicrobial conversion of CO2 to higher alcohols. Science, 2012, 335: 1596.

[19]

Li Z, Xin X, Xiong B, Zhao D, Zhang X, Bi C. Engineering the calvin–benson–bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production. Microb Cell Fact, 2020, 19: 228.

[20]

Li S, Kim M, Jae J, Jang M, Jeon BH, Kim JR. Solid neutral red/Nafion conductive layer on carbon felt electrode enhances acetate production from CO(2) and energy efficiency in microbial electrosynthesis system. Bioresour Technol, 2022, 363: 127983.

[21]

Lin L, Huang H, Zhang X, Dong L, Chen Y. Hydrogen-oxidizing bacteria and their applications in resource recovery and pollutant removal. Sci Total Environ, 2022, 835: 155559.

[22]

Liu J, Yin M, Zhu H, Lu J, Cui Z. Purification and characterization of a hyperthermostable Mn-superoxide dismutase from Thermus thermophilus HB27. Extremophiles, 2011, 15: 221-226.

[23]

Liu C, Colón BE, Silver PA, Nocera DG. Solar-powered CO2 reduction by a hybrid biological vertical inorganic system. J Photochem Photobiol A, 2018, 358: 411-415.

[24]

Liu Y, Wang X, Nong S, Bai Z, Han N, Wu Q, Huang Z, Ding J. Display of a novel carboxylesterase CarCby on Escherichia coli cell surface for carbaryl pesticide bioremediation. Microb Cell Fact, 2022, 21: 97.

[25]

Lu Z, Xu W, Zhu W, Yang Q, Lei X, Liu J, Li Y, Sun X, Duan X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem Commun (camb), 2014, 50: 6479-6482.

[26]

Martinez-Martinez I, Navarro-Fernandez J, Garcia-Carmona F, Sanchez-Ferrer A. Implication of a mutation in the flavin binding site on the specific activity and substrate specificity of glycine oxidase from Bacillus subtilis produced by directed evolution. J Biotechnol, 2008, 133: 1-8.

[27]

Matassa S, Verstraete W, Pikaar I, Boon N. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Res, 2016, 101: 137-146.

[28]

Mishra A, Ntihuga JN, Molitor B, Angenent LT. Power-to-protein: carbon fixation with renewable electric power to feed the world. Joule, 2020, 4: 1142-1147.

[29]

Nicolay T, Vanderleyden J, Spaepen S. Autotransporter-based cell surface display in Gram-negative bacteria. Crit Rev Microbiol, 2015, 41: 109-123.

[30]

Repaske R, Mayer R. Dense autotrophic cultures of alcaligenes eutrophus. Appl Environ Microbiol, 1976, 32: 592-597.

[31]

Ritala A, Häkkinen ST, Toivari M, Wiebe MG. Single cell protein-state-of-the-art, industrial landscape and patents 2001–2016. Front Microbiol, 2017, 8: 2009.

[32]

Ruuskanen V, Givirovskiy G, Elfving J, Kokkonen P, Karvinen A, Järvinen L, Sillman J, Vainikka M, Ahola J. Neo-carbon food concept: a pilot-scale hybrid biological–inorganic system with direct air capture of carbon dioxide. J Cleaner Prod, 2021

[33]

Shang G, Cui K, Cai W, Hu X, Jin P, Guo K. A 20 L electrochemical continuous stirred-tank reactor for high rate microbial electrosynthesis of methane from CO2. Chem Eng J, 2023

[34]

Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colon B, Way JC, Silver PA, Nocera DG. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc Natl Acad Sci USA, 2015, 112: 2337-2342.

[35]

Tozakidis IE, Sichwart S, Teese MG, Jose J. Autotransporter mediated esterase display on Zymomonas mobilis and Zymobacter palmae. J Biotechnol, 2014, 191: 228-235.

[36]

Tozakidis IE, Sichwart S, Jose J. Going beyond E. coli: autotransporter based surface display on alternative host organisms. N Biotechnol, 2015, 32: 644-650.

[37]

Tsai D-Y, Tsai Y-J, Yen C-H, Ouyang C-Y, Yeh Y-C. Bacterial surface display of metal binding peptides as whole-cell biocatalysts for 4-nitroaniline reduction. RSC Adv, 2015, 5: 87998-88001.

[38]

Valls M, Atrian S, de Lorenzo V, Fernandez LA. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol, 2000, 18: 661-665.

[39]

Verhoeven GS, Alexeeva S, Dogterom M, den Blaauwen T. Differential bacterial surface display of peptides by the transmembrane domain of OmpA. PLoS ONE, 2009, 4: e6739.

[40]

Volova TG, Barashkov VA. Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms. Prikl Biokhim Mikrobiol, 2010, 46: 624-629.

[41]

Wang K, Liu ZH, Chen BQ, Wang M, Zhang Y, Bi HR, Zhou YL, Huo YY, Tan TW. Microbial utilization of carbon dioxide to synthesize fuels and chemicals—third-generation biorefineries. Synth Biol J, 2020, 1: 60-70.

[42]

Wong PY, Cheng KY, Kaksonen AH, Sutton DC, Ginige MP. Enrichment of anodophilic nitrogen fixing bacteria in a bioelectrochemical system. Water Res, 2014, 64: 73-81.

[43]

Wu H, Pan H, Li Z, Liu T, Liu F, Xiu S, Wang J, Wang H, Hou Y, Yang B, Lei L, Lian J. Efficient production of lycopene from CO2 via microbial electrosynthesis. Chem Eng J, 2022

[44]

Xiong B, Li Z, Liu L, Zhao D, Zhang X, Bi CH. Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. Biotechnol Biofuels, 2018, 11: 172.

[45]

Yang X, Jiang Y, Wang S, Zou R, Su Y, Angelidaki I, Zhang Y. Self-sustained ammonium recovery from wastewater and upcycling for hydrogen-oxidizing bacteria-based power-to-protein conversion. Bioresour Technol, 2022, 344: 126271.

[46]

Yang X, Jiang Y, Zou R, Xu M, Su Y, Angelidaki I, Zhang Y. Green electricity-driven simultaneous ammonia recovery and in-situ upcycling for microbial protein production. Chem Eng J, 2022

[47]

You C, Zhang YH. Simple cloning and DNA assembly in escherichia coli by prolonged overlap extension PCR. Methods Mol Biol, 2014, 1116: 183-192.

[48]

You C, Zhang XZ, Zhang YH. Simple cloning via direct transformation of PCR product (DNA multimer) to Escherichia coli and Bacillus subtilis. Appl Environ Microbiol, 2012, 78: 1593-1595.

[49]

Yu J. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J Microbiol Biotechnol, 2018, 34: 89.

[50]

Zhang J, Liu D, Liu Y, Chu H, Bai J, Cheng J, Zhao H, Fu S, Liu H, Fu Y, Ma Y, Jiang H. Hybrid synthesis of polyhydroxybutyrate bioplastics from carbon dioxide. Green Chem, 2023, 25: 3247-3255.

Funding

Key Technologies Research and Development Program(2021YFD1301002)

Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(TSBICIPKJGG-012-04)

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/