Exploiting a heterologous construction of the 3-hydroxypropionic acid carbon fixation pathway with mesaconate as an indicator in Saccharomyces cerevisiae

Shijie Xu , Weibo Qiao , Zuanwen Wang , Xiaoying Fu , Zihe Liu , Shuobo Shi

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 33

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 33 DOI: 10.1186/s40643-023-00652-5
Research

Exploiting a heterologous construction of the 3-hydroxypropionic acid carbon fixation pathway with mesaconate as an indicator in Saccharomyces cerevisiae

Author information +
History +
PDF

Abstract

The 3-Hydroxypropionic acid (3-HP) pathway is one of the six known natural carbon fixation pathways, in which the carbon species used is bicarbonate. It has been considered to be the most suitable pathway for aerobic CO2 fixation among the six natural carbon fixation pathways. Mesaconate is a high value-added derivative in the 3-HP pathway and can be used as a co-monomer to produce fire-retardant materials and hydrogels. In this study, we use mesaconate as a reporting compound to evaluate the construction and optimization of the sub-part of the 3-HP pathway in Saccharomyces cerevisiae. Combined with fine-tuning of the malonyl-CoA reductase (MCR-C and MCR-N) expression level and optimization of 3-Hydroxypropionyl-CoA synthase, the 3-HP sub-pathway was optimized using glucose or ethanol as the substrate, with the productions of mesaconate reaching 90.78 and 61.2 mg/L, respectively.

Cite this article

Download citation ▾
Shijie Xu, Weibo Qiao, Zuanwen Wang, Xiaoying Fu, Zihe Liu, Shuobo Shi. Exploiting a heterologous construction of the 3-hydroxypropionic acid carbon fixation pathway with mesaconate as an indicator in Saccharomyces cerevisiae. Bioresources and Bioprocessing, 2023, 10(1): 33 DOI:10.1186/s40643-023-00652-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alber BE, Kung JW, Fuchs G. 3-hydroxypropionyl-coenzyme a synthetase from Metallosphaera sedula, an enzyme involved in autotrophic CO2 fixation. J Bacteriol, 2008, 190(4): 1383-1389.

[2]

Bar-Even A, Noor E, Lewis NE, Milo R. Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci USA, 2010, 107(19): 8889-8894.

[3]

Chen Y, Bao J, Kim I-K, Siewers V, Nielsen J. Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab Eng, 2014, 22: 104-109.

[4]

Chen X, Yang X, Shen Y, Hou J, Bao X. Increasing Malonyl-CoA derived product through controlling the transcription regulators of phospholipid synthesis in Saccharomyces cerevisiae. ACS Synth Biol, 2017, 6(5): 905-912.

[5]

Clomburg JM, Crumbley AM, Gonzalez R. Industrial biomanufacturing: the future of chemical production. Science, 2017, 355(6320): aag0804.

[6]

Daran-Lapujade P, Jansen MLA, Daran J-M, van Gulik W, de Winde JH, Pronk JT. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae: a CHEMOSTAT CULTURE STUDY*. J Biol Chem, 2004, 279(10): 9125-9138.

[7]

David F, Nielsen J, Siewers V. Flux Control at the Malonyl-CoA Node through Hierarchical Dynamic Pathway Regulation in Saccharomyces cerevisiae. ACS Synth Biol, 2016, 5(3): 224-233.

[8]

Ding W, Meng Q, Dong G, Qi N, Zhao H, Shi S. Metabolic engineering of threonine catabolism enables Saccharomyces cerevisiae to produce propionate under aerobic conditions. Biotechnol J, 2022, 17(3): 2100579.

[9]

Fuchs G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?. Annu Rev Microbiol, 2011, 65(1): 631-658.

[10]

Glikson A. The lungs of the earth: review of the carbon cycle and mass extinction of species. Energy Procedia, 2018, 146: 3-11.

[11]

Gonzalez de la Cruz J, Machens F, Messerschmidt K, Bar-Even A. Core catalysis of the reductive glycine pathway demonstrated in yeast. ACS Synth Biol, 2019, 8(5): 911-917.

[12]

Guadalupe-Medina V, Wisselink HW, Luttik MA, de Hulster E, Daran J-M, Pronk JT, van Maris AJ. Carbon dioxide fixation by Calvin-cycle enzymes improves ethanol yield in yeast. Biotechnol Biofuels, 2013, 6(1): 125.

[13]

Horswill AR, Escalante-Semerena JC. Characterization of the Propionyl-CoA synthetase (PrpE) Enzyme of Salmonella enterica: residue Lys592 Is required for propionyl-AMP synthesis. Biochemistry, 2002, 41(7): 2379-2387.

[14]

Hu G, Li Y, Ye C, Liu L, Chen X. Engineering microorganisms for enhanced CO2 sequestration. Trends Biotechnol, 2019, 37(5): 532-547.

[15]

Hügler M, Menendez C, Schägger H, Fuchs G. Malonyl-coenzyme a reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Bacteriol, 2002, 184(9): 2404-2410.

[16]

Jessop-Fabre MM, Jakočiūnas T, Stovicek V, Dai Z, Jensen MK, Keasling JD, Borodina I. EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J, 2016, 11(8): 1110-1117.

[17]

Kildegaard KR, Jensen NB, Schneider K, Czarnotta E, Özdemir E, Klein T, Maury J, Ebert BE, Christensen HB, Chen Y, Kim I-K, Herrgård MJ, Blank LM, Forster J, Nielsen J, Borodina I. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Fact, 2016, 15(1): 53.

[18]

Laxman S, Sutter BM, Shi L, Tu BP. Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites. Sci Signal, 2014, 7(356): ra120.

[19]

Lee YJ, Jang JW, Kim KJ, Maeng PJ. TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae. Yeast, 2011, 28(2): 153-166.

[20]

Li S, Si T, Wang M, Zhao H. Development of a synthetic Malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening. ACS Synth Biol, 2015, 4(12): 1308-1315.

[21]

Li YJ, Wang MM, Chen YW, Wang M, Fan LH, Tan TW. Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars. Sci Rep, 2017, 7: 43875.

[22]

Li T, Liu G-S, Zhou W, Jiang M, Ren Y-H, Tao X-Y, Liu M, Zhao M, Wang F-Q, Gao B, Wei D-Z. Metabolic engineering of Saccharomyces cerevisiae to overproduce squalene. J Agric Food Chem, 2020, 68(7): 2132-2138.

[23]

Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M. Gas fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol, 2016, 7: 694.

[24]

Liu C, Wang Q, Xian M, Ding Y, Zhao G. Dissection of malonyl-coenzyme a reductase of Chloroflexus aurantiacus results in enzyme activity improvement. PLoS ONE, 2013, 8(9

[25]

Liu C, Ding Y, Zhang R, Liu H, Xian M, Zhao G. Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis. Metab Eng, 2016, 34: 104-111.

[26]

Liu Z, Wang K, Chen Y, Tan T, Nielsen J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat Catal, 2020, 3(3): 274-288.

[27]

Mattozzi M, Ziesack M, Voges MJ, et al. (2013) Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth. Metab Eng 16:130–139

[28]

Maury J, Kannan S, Jensen NB, Öberg FK, Kildegaard KR, Forster J, Nielsen J, Workman CT, Borodina I. Glucose-dependent promoters for dynamic regulation of metabolic pathways. Front Bioeng Biotechnol, 2018, 6: 63.

[29]

Minard KI, McAlister-Henn L. Sources of NADPH in yeast vary with carbon source*. J Biol Chem, 2005, 280(48): 39890-39896.

[30]

Nielsen J, Keasling JD. Engineering cellular metabolism. Cell, 2016, 164(6): 1185-1197.

[31]

Qin N, Li L, Ji X, Li X, Zhang Y, Larsson C, Chen Y, Nielsen J, Liu Z. Rewiring central carbon metabolism ensures increased provision of Acetyl-CoA and NADPH required for 3-OH-propionic acid production. ACS Synth Biol, 2020, 9(12): 3236-3244.

[32]

Son HF, Kim S, Seo H, Hong J, Lee D, Jin KS, Park S, Kim K-J. Structural insight into bi-functional malonyl-CoA reductase. Environ Microbiol, 2020, 22(2): 752-765.

[33]

Sonntag F, Buchhaupt M, Schrader J. Thioesterases for ethylmalonyl–CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1. Appl Microbiol Biotechnol, 2014, 98(10): 4533-4544.

[34]

Venkata Mohan S, Modestra JA, Amulya K, Butti SK, Velvizhi G. A circular bioeconomy with biobased products from CO2 sequestration. Trends Biotechnol, 2016, 34(6): 506-519.

[35]

Xiberras J, Klein M, Nevoigt E. Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses—knowledge gaps regarding the central carbon catabolism of this ‘non-fermentable’ carbon source. Biotechnol Adv, 2019, 37(6

[36]

Yu W, Cao X, Gao J, Zhou YJ. Overproduction of 3-hydroxypropionate in a super yeast chassis. Bioresour Technol, 2022, 361.

[37]

Zhang Y, Wang J, Wang Z, Zhang Y, Shi S, Nielsen J, Liu Z. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun, 2019, 10(1): 1053.

Funding

Key Technologies Research and Development Program(2018YFA0900100)

Postdoctoral Research Foundation of China(2021M690321)

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/