Metabolic mechanism of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous in response to sodium citrate treatment

Xueshan Pan , Tonggang Li , Baobei Wang , Shuhua Qi , Dandan Yang , Zheng Huang , Renfei Gao , Jingyan Li , Xueping Ling , Yinghua Lu

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 29

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 29 DOI: 10.1186/s40643-023-00650-7
Research

Metabolic mechanism of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous in response to sodium citrate treatment

Author information +
History +
PDF

Abstract

Na-citrate treatment significantly increases biomass and astaxanthin yield in X. dendrorhous.

Na-citrate treatment enhances the glycolysis pathway in X. dendrorhous.

Na-citrate treatment downregulates TCA cycle-associated metabolites in X. dendrorhous.

Na-citrate treatment improves the transcription levels of key genes associated with astaxanthin biosynthesis.

Exogenous Na-citrate treatment is a potential regulatory model for astaxanthin biosynthesis in X. dendrorhous

Keywords

Xanthophyllomyces dendrorhous / Astaxanthin / Na-citrate / Metabolomics / Gene expression

Cite this article

Download citation ▾
Xueshan Pan, Tonggang Li, Baobei Wang, Shuhua Qi, Dandan Yang, Zheng Huang, Renfei Gao, Jingyan Li, Xueping Ling, Yinghua Lu. Metabolic mechanism of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous in response to sodium citrate treatment. Bioresources and Bioprocessing, 2023, 10(1): 29 DOI:10.1186/s40643-023-00650-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alcalde E, Fraser PD. Extending our tools and resources in the non-conventional industrial yeast Xanthophyllomyces dendrorhous through the application of metabolite profiling methodologies. Metabolomics, 2018, 14(3): 30.

[2]

Alesci A, Salvo A, Lauriano ER, Gervasi T, Palombieri D, Bruno M, Pergolizzi S, Cicero N. Production and extraction of astaxanthin from Phaffia rhodozyma and its biological effect on alcohol-induced renal hypoxia in Carassius auratus. Nat Prod Res, 2015, 29(12): 1122-1126.

[3]

Amado IR, Vazquez JA. Mussel processing wastewater: a low-cost substrate for the production of astaxanthin by Xanthophyllomyces dendrorhous. Microb Cell Fact, 2015, 14: 177.

[4]

An GH. Improved growth of the red yeast, Phaffia rhodozyma (Xanthophyllomyces dendrorhous), in the presence of tricarboxylic acid cycle intermediates. Biotechnol Lett, 2001, 23: 1005-1009.

[5]

Bauer A, Minceva M. Techno-economic analysis of a new downstream process for the production of astaxanthin from the microalgae Haematococcus pluvialis. Bioresour Bioprocess, 2021, 8(1): 111.

[6]

Chatragadda R, Dufosse L. Ecological and biotechnological aspects of pigmented microbes: a way forward in development of food and pharmaceutical grade pigments. Microorganisms, 2021, 9(3): 637.

[7]

Chavez-Cabrera C, Flores-Bustamante ZR, Marsch R, Montes Mdel C, Sanchez S, Cancino-Diaz JC, Flores-Cotera LB. ATP-citrate lyase activity and carotenoid production in batch cultures of Phaffia rhodozyma under nitrogen-limited and nonlimited conditions. Appl Microbiol Biotechnol, 2010, 85(6): 1953-1960.

[8]

Chen T, Wei D, Chen G, Wang Y, Chen F. Employment of organic acids to enhance astaxanthin formation in heterotrophic Chlorella zofingiensis. J Food Process Pres, 2009, 33(2): 271-284.

[9]

Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol, 2015, 8(2): 190-209.

[10]

de la Fuente JL, Rodriguez-Saiz M, Schleissner C, Diez B, Peiro E, Barredo JL. High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous. J Biotechnol, 2010, 148(2–3): 144-146.

[11]

Du H, Liao X, Gao Z, Li Y, Lei Y, Chen W, Chen L, Fan X, Zhang K, Chen S, Ma Y, Meng C, Li D. Effects of methanol on carotenoids as well as biomass and fatty acid biosynthesis in Schizochytrium limacinum B4D1. Appl Environ Microbiol, 2019, 85(19): 1-16.

[12]

Du F, Hu C, Sun X, Zhang L, Xu N. Transcriptome analysis reveals the promoting effect of trisodium citrate on astaxanthin accumulation in Haematococcus pluvialis under high light condition. Aquaculture, 2021, 543.

[13]

Flores-Cotera LB, Martin R, Sanchez S. Citrate, a possible precursor of astaxanthin in Phaffia rhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium. Appl Microbiol Biotechnol, 2001, 55(3): 341-347.

[14]

Gervasi T, Santini A, Daliu P, Salem AZM, Gervasi C, Pellizzeri V, Barrega L, De Pasquale P, Dugo G, Cicero N. Astaxanthin production by Xanthophyllomyces dendrorhous growing on a low cost substrate. Agroforest Syst, 2019, 94(4): 1229-1234.

[15]

Gessler NN, Aver'yanov AA, Belozerskaya TA. Reactive oxygen species in regulation of fungal development. Biochemistry (mosc), 2007, 72(10): 1091-1109.

[16]

Hara KY, Morita T, Mochizuki M, Yamamoto K, Ogino C, Araki M, Kondo A. Development of a multi-gene expression system in Xanthophyllomyces dendrorhous. Microb Cell Fact, 2014, 13(1): 175.

[17]

Harith ZT, de Andrade LM, Charalampopoulos D, Chatzifragkou A. Optimised production and extraction of astaxanthin from the yeast Xanthophyllomyces dendrorhous. Microorganisms., 2020, 8(3): 430.

[18]

Hu ZC, Zheng YG, Wang Z, Shen YC. pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enzyme Microb Tech, 2006, 39(4): 586-590.

[19]

Hu ZC, Zheng YG, Wang Z, Shen YC. Production of astaxanthin by Xanthophyllomyces dendrorhous ZJUT46 with fed-batch fermentation in 2.0 m3 Fermentor. Food Technol Biotech, 2007, 45: 209-212.

[20]

Jakobsen AN, Aasen IM, Strom AR. Endogenously synthesized (-)-proto-quercitol and glycine betaine are principal compatible solutes of Schizochytrium sp. strain S8 (ATCC 20889) and three new isolates of phylogenetically related thraustochytrids. Appl Environ Microbiol, 2007, 73(18): 5848-5856.

[21]

Kanwugu ON, Glukhareva TV, Danilova IG, Kovaleva EG. Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Crit Rev Food Sci, 2022, 62(18): 5005-5028.

[22]

Kim JH, Kang SW, Kim SW, Chang HI. High-level production of astaxanthin by Xanthophyllomyces dendrorhous mutant JH1 using statistical experimental designs. Biosci Biotechnol Biochem, 2005, 69(9): 1743-1748.

[23]

Li Z, Meng T, Ling X, Li J, Zheng C, Shi Y, Chen Z, Li Z, Li Q, Lu Y, He N. Overexpression of Malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production. J Agr Food Chem., 2018, 66(21): 5382-5391.

[24]

Li C, Swofford CA, Sinskey AJ. Modular engineering for microbial production of carotenoids. Metab Eng Commun, 2020, 10.

[25]

Liu ZQ, Zhang JF, Zheng YG, Shen YC. Improvement of astaxanthin production by a newly isolated Phaffia rhodozyma mutant with low-energy ion beam implantation. J Appl Microbiol, 2008, 104(3): 861-872.

[26]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.

[27]

Los DA, Mironov KS, Allakhverdiev SI. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res, 2013, 116(2–3): 489-509.

[28]

Martinez-Cardenas A, Chavez-Cabrera C, Vasquez-Bahena JM, Flores-Cotera LB. A common mechanism explains the induction of aerobic fermentation and adaptive antioxidant response in Phaffia rhodozyma. Microb Cell Fact, 2018, 17(1): 53.

[29]

Misawa N. Carotenoid beta-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls. Mar Drugs, 2011, 9(5): 757-771.

[30]

Nutakor C, Kanwugu ON, Kovaleva EG, Glukhareva TV. Enhancing astaxanthin yield in Phaffia rhodozyma: current trends and potential of phytohormones. Appl Microbiol Biotechnol, 2022, 106(9–10): 3531-3538.

[31]

Pan X, Wang B, Gerken HG, Lu Y, Ling X. Proteomic analysis of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous in response to low carbon levels. Bioprocess Biosyst Eng, 2017, 40(7): 1091-1100.

[32]

Pan X, Wang B, Duan R, Jia J, Li J, Xiong W, Ling X, Chen C, Huang X, Zhang G, Lu Y. Enhancing astaxanthin accumulation in Xanthophyllomyces dendrorhous by a phytohormone: metabolomic and gene expression profiles. Microb Biotechnol, 2020, 13(5): 1446-1460.

[33]

Ramesh C, Vinithkumar NV, Kirubagaran R, Venil CK, Dufosse L. Multifaceted applications of microbial pigments: current knowledge, challenges and future directions for public health implications. Microorganisms, 2019, 7(7): 186.

[34]

Ramesh C, Prasastha VR, Venkatachalam M, Dufossé L. Natural substrates and culture conditions to produce pigments from potential microbes in submerged fermentation. Fermentation, 2022, 8(9): 460.

[35]

Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol, 2002, 51: 1-51.

[36]

Sánchez C, Neves Ana R, Cavalheiro J, dos Santos MM, García-Quintáns N, López P, Santos H. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Appl Environ Microb, 2008, 74(4): 1136-1144.

[37]

Schewe H, Kreutzer A, Schmidt I, Schubert C, Schrader J. High concentrations of biotechnologically produced astaxanthin by lowering pH in a Phaffia rhodozyma bioprocess. Biotechnol Bioproc E, 2017, 22(3): 319-326.

[38]

Torres-Haro A, Gschaedler A, Mateos-Díaz JC, Herrera-López EJ, Camacho-Ruíz RM, Arellano-Plaza M. Improvement of a specific culture medium based on industrial glucose for carotenoid production by Xanthophyllomyces dendrorhous. Processes, 2021, 9(3): 429.

[39]

Torres-Haro A, Verdin J, Kirchmayr MR, Arellano-Plaza M. Metabolic engineering for high yield synthesis of astaxanthin in Xanthophyllomyces dendrorhous. Microb Cell Fact, 2021, 20(1): 175.

[40]

Veen M, Lang C. Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2004, 63(6): 635-646.

[41]

Venkateshwaran M, Jayaraman D, Chabaud M, Genre A, Balloon AJ, Maeda J, Forshey K, den Os D, Kwiecien NW, Coon JJ, Barker DG, Ane JM. A role for the mevalonate pathway in early plant symbiotic signaling. Proc Natl Acad Sci USA, 2015, 112(31): 9781-9786.

[42]

Wang W, Yu L. Effects of oxygen supply on growth and carotenoids accumulation by Xanthophyllomyces dendrorhous. Zeitschrift Für Naturforschung C, 2009, 64(11–12): 853-858.

[43]

Wang B, Pan X, Jia J, Xiong W, Manirafasha E, Ling X, Lu YH. Strategy and regulatory mechanisms of glutamate feeding to enhance astaxanthin yield in Xanthophyllomyces dendrorhous. Enzyme Microb Technol, 2019, 125: 45-52.

[44]

Xie Y, Ho SH, Chen CN, Chen CY, Ng IS, Jing KJ, Chang JS, Lu YH. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: effects of nitrate concentration, light intensity and fed-batch operation. Bioresour Technol, 2013, 144: 435-444.

[45]

Yamamoto K, Hara KY, Morita T, Nishimura A, Sasaki D, Ishii J, Ogino C, Kizaki N, Kondo A. Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes. Microb Cell Fact, 2016, 15(1): 155.

[46]

Yu XJ, Sun J, Sun YQ, Zheng JY, Wang Z. Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Eng J, 2016, 112: 258-268.

[47]

Yu XJ, Sun J, Zheng JY, Sun YQ, Wang Z. Metabolomics analysis reveals 6-benzylaminopurine as a stimulator for improving lipid and DHA accumulation of Aurantiochytrium sp. J Chem Technol Biotechnol, 2016, 91(4): 1199-1207.

[48]

Yu C, Wang HP, Qiao T, Zhao Y, Yu X. A fed-batch feeding with succinic acid strategy for astaxanthin and lipid hyper-production in Haematococcus pluvialis. Bioresource Technol, 2021, 340.

[49]

Yu W, Zhang L, Zhao J, Liu J. Enhancement of astaxanthin accumulation in Haematococcus pluvialis by exogenous oxaloacetate combined with nitrogen deficiency. Bioresource Technol, 2022, 345.

[50]

Zhang X, Jiang L, Zhu LY, Shen QK, Ji XJ, Huang H, Zhang HM. Effects of aeration on metabolic profiles of Mortierella alpina during the production of arachidonic acid. J Ind Microbiol Biot, 2017, 44(8): 1225-1235.

[51]

Zhang J, Li QR, Zhang MH, You Y, Wang Y, Wang YH. Enhancement of carotenoid biosynthesis in Phaffia rhodozyma PR106 under stress conditions. Biosci Biotechnol Biochem, 2019, 83(12): 2375-2385.

[52]

Zheng YG, Hu ZC, Wang Z, Shen YC. Large-scale production of astaxanthin by Xanthophyllomyces dendrorhous. Food Bioprod Process, 2006, 84: 164-166.

[53]

Zhou J, Liu L, Chen J. Improved ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production. J Appl Microbiol, 2011, 110(1): 44-53.

[54]

Zhu Y, Zhang Z, Xu X, Cheng J, Chen S, Tian J, Yang W, Crocker M. Simultaneous promotion of photosynthesis and astaxanthin accumulation during two stages of Haematococcus pluvialis with ammonium ferric citrate. Sci Total Environ, 2021, 750.

Funding

National Natural Science Foundation of China(32200047)

Key Program of Anhui Province Education Department(KJ2021A0711)

College of Agriculture Science and Natural Resources, Institute of Agriculture and Natural Resources(2020byzd025)

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/