Engineering growth phenotypes of Aspergillus oryzae for L-malate production

Huiyun Zuo , Lihao Ji , Jingyu Pan , Xiulai Chen , Cong Gao , Jia Liu , Wanqing Wei , Jing Wu , Wei Song , Liming Liu

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 25

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 25 DOI: 10.1186/s40643-023-00642-7
Research

Engineering growth phenotypes of Aspergillus oryzae for L-malate production

Author information +
History +
PDF

Abstract

A close correlation was found between the growth status of Aspergillus oryzae and L-malate production.

Adaptive evolution enhances growth status and capacity of L-malate production of Aspergillus oryzae.

Transcriptomic analysis and morphological characterization reveal the growth mechanism of Aspergillus oryzae.

Keywords

L-malate / Aspergillus oryzae / Adaptive evolution / Growth mechanism / Growth phenotypes

Cite this article

Download citation ▾
Huiyun Zuo, Lihao Ji, Jingyu Pan, Xiulai Chen, Cong Gao, Jia Liu, Wanqing Wei, Jing Wu, Wei Song, Liming Liu. Engineering growth phenotypes of Aspergillus oryzae for L-malate production. Bioresources and Bioprocessing, 2023, 10(1): 25 DOI:10.1186/s40643-023-00642-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Battat E, Peleg Y, Bercovitz A, Rokem JS, Goldberg I. Optimizatiom of L-malic acid production by Aspergillus-flavus in a stirred fermenter. Biotechnol Bioeng, 1991, 37(11): 1108-1116.

[2]

Bayram O, Bayram OS, Ahmed YL, Maruyama J, Valerius O, Rizzoli SO, Ficner R, Irniger S, Braus GH. The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism. PLoS Genet, 2012, 8(7

[3]

Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol, 2013, 97(20): 8903-8912.

[4]

Chen X, Zhou J, Ding Q, Luo Q, Liu L. Morphology engineering of Aspergillus oryzae for L-malate production. Biotechnol Bioeng, 2019, 116(10): 2662-2673.

[5]

Crescenzi O, Kurtz M, Champe S. Developmental defects resulting from arginine auxotrophy in Aspergillus nidulans. J Gen Microbiol, 1983, 129: 3535-3544.

[6]

de Castro PA, Chiaratto J, Winkelstroter LK, Bom VL, Ramalho LN, Goldman MH, Brown NA, Goldman GH. The involvement of the Mid1/Cch1/Yvc1 calcium channels in Aspergillus fumigatus virulence. PLoS ONE, 2014, 9(8

[7]

Ding Q, Luo Q, Zhou J, Chen X, Liu L. Enhancing L-malate production of Aspergillus oryzae FMME218-37 by improving inorganic nitrogen utilization. Appl Microbiol Biotechnol, 2018, 102(20): 8739-8751.

[8]

Dong X, Chen X, Qian Y, Wang Y, Wang L, Qiao W, Liu L. Metabolic engineering of Escherichia coli W3110 to produce L-malate. Biotechnol Bioeng, 2017, 114(3): 656-664.

[9]

Dörsam S, Fesseler J, Gorte O, Hahn T, Zibek S, Syldatk C, Ochsenreither K. Sustainable carbon sources for microbial organic acid production with filamentous fungi. Biotechnol Biofuels, 2017, 10(1): 242.

[10]

Driouch H, Sommer B, Wittmann C. Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng, 2010, 105(6): 1058-1068.

[11]

Dynesen J, Nielsen J. Surface hydrophobicity of Aspergillus nidulans conidiospores and its role in pellet formation. Biotechnol Prog, 2003, 19(3): 1049-1052.

[12]

Fiedler MRM, Cairns TC, Koch O, Kubisch C, Meyer V. Conditional expression of the small GTPase ArfA impacts secretion, morphology, growth, and actin ring position in Aspergillus niger. Front Microbiol, 2018, 9: 878.

[13]

Goldberg I, Rokem JS, Pines O. Organic acids: old metabolites, new themes. J Chem Technol Biot, 2006, 81(10): 1601-1611.

[14]

Guo L, Zhang F, Zhang C, Hu G, Gao C, Chen X, Liu L. Enhancement of malate production through engineering of the periplasmic rTCA pathway in Escherichia coli. Biotechnol Bioeng, 2018, 115(6): 1571-1580.

[15]

Han S, Adams TH. Complex control of the developmental regulatory locus brlA in Aspergillus nidulans. Mol Genet Genomics, 2001, 266(2): 260-270.

[16]

Iyyappan J, Bharathiraja B, Baskar G, Jayamuthunagai J, Barathkumar S, Anna Shiny R. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol. Bioresour Technol, 2018, 251: 264-267.

[17]

Ji L, Wang J, Luo Q, Ding Q, Tang W, Chen X, Liu L. Enhancing L-malate production of Aspergillus oryzae by nitrogen regulation strategy. Appl Microbiol Biotechnol, 2021, 105(8): 3101-3113.

[18]

Knuf C, Nookaew I, Brown SH, McCulloch M, Berry A, Nielsen J. Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions. Appl Environ Microbiol, 2013, 79(19): 6050-6058.

[19]

Lee MK, Kwon NJ, Choi JM, Lee IS, Jung S, Yu JH. NsdD is a key repressor of asexual development in Aspergillus nidulans. Genetics, 2014, 197(1): 159-173.

[20]

Liu J, Xie Z, Shin HD, Li J, Du G, Chen J, Liu L. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate. J Biotechnol, 2017, 253: 1-9.

[21]

Liu J, Li J, Liu Y, Shin HD, Ledesma-Amaro R, Du G, Chen J, Liu L. Synergistic rewiring of carbon metabolism and redox metabolism in cytoplasm and mitochondria of Aspergillus oryzae for increased L-malate production. ACS Synth Biol, 2018, 7(9): 2139-2147.

[22]

Ljubimova JY, Fujita M, Khazenzon NM, Lee BS, Wachsmann-Hogiu S, Farkas DL, Black KL, Holler E. Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact, 2008, 171(2): 195-203.

[23]

Ming-Yueh W, Matthew E, Mi-Kyung L, Erin M, Sun-Chang K, Jae-Hyuk Y. Systematic dissection of the evolutionarily conserved WetA developmental regulator across a genus of filamentous fungi. mBio, 2018, 9(4): e01130-011118.

[24]

Nakayama S, Tabata K, Oba T, Kusumoto K, Mitsuiki S, Kadokura T, Nakazato A. Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain No. 28. J Biosci Bioeng, 2012, 114(3): 281-285.

[25]

Ochsenreither K, Fischer C, Neumann A, Syldatk C. Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863. Appl Microbiol Biotechnol, 2014, 98(12): 5449-5460.

[26]

Ottenheim C, Werner K, Zimmermann W, Wu J. Improved endoxylanase production and colony morphology of Aspergillus niger DSM 26641 by γ-ray induced mutagenesis. Biochem Eng J, 2015, 94: 9-14.

[27]

Palmer JM, Perrin RM, Dagenais TR, Keller NP. H3K9 methylation regulates growth and development in Aspergillus fumigatus. Eukaryot Cell, 2008, 7(12): 2052-2060.

[28]

Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv, 2004, 22(3): 189-259.

[29]

Pringle A, Taylor J. The fitness of filamentous fungi. Trends Microbiol, 2002, 10: 474-481.

[30]

Purschwitz J, Muller S, Kastner C, Fischer R. Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol, 2006, 9(6): 566-571.

[31]

Schmideder S, Muller H, Barthel L, Friedrich T, Niessen L, Meyer V, Briesen H. Universal law for diffusive mass transport through mycelial networks. Biotechnol Bioeng, 2021, 118(2): 930-943.

[32]

Schmoll M, Esquivel-Naranjo EU, Herrera-Estrella A. Trichoderma in the light of day–physiology and development. Fungal Genet Biol, 2010, 47(11): 909-916.

[33]

Schoustra S, Punzalan D. Correlation of mycelial growth rate with other phenotypic characters in evolved genotypes of Aspergillus nidulans. Fungal Biol, 2012, 116(5): 630-636.

[34]

Semighini CP, Harris SD. Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species. Genetics, 2008, 179(4): 1919-1932.

[35]

Seo JA, Guan Y, Yu JH. Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics, 2003, 165: 1083-1093.

[36]

Stark D, Zala D, Münch T, Sonnleitner B, Marison I, Stockar U. Inhibition aspects of the bioconversion of l-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae. Enzyme Microb Technol, 2003, 32: 212-223.

[37]

Taing O, Taing K. Production of malic and succinic acids by sugar-tolerant yeast Zygosaccharomyces rouxii. Eur Food Res Technol, 2006, 224(3): 343-347.

[38]

Teng Y, Xu Y, Wang D. Changes in morphology of Rhizopus chinensis in submerged fermentation and their effect on production of mycelium-bound lipase. Bioprocess Biosyst Eng, 2009, 32(3): 397-405.

[39]

Thakker C, Martinez I, Li W, San KY, Bennett GN. Metabolic engineering of carbon and redox flow in the production of small organic acids. J Ind Microbiol Biotechnol, 2015, 42(3): 403-422.

[40]

Tsitsigiannis DI, Keller NP. Oxylipins as developmental and host-fungal communication signals. Trends Microbiol, 2007, 15(3): 109-118.

[41]

Vargas-Perez I, Sanchez O, Kawasaki L, Georgellis D, Aguirre J. Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans. Eukaryot Cell, 2007, 6(9): 1570-1583.

[42]

Wang S, Cao J, Liu X, Hu H, Shi J, Zhang S, Keller NP, Lu L. Putative calcium channels CchA and MidA play the important roles in conidiation, hyphal polarity and cell wall components in Aspergillus nidulans. PLoS ONE, 2012, 7(10

[43]

West TP. Malic acid production from thin stillage by Aspergillus species. Biotechnol Lett, 2011, 33(12): 2463-2467.

[44]

Xu Y, Zhou Y, Cao W, Liu H. Improved production of malic acid in Aspergillus niger by abolishing citric acid accumulation and enhancing glycolytic flux. ACS Synth Biol, 2020, 9(6): 1418-1425.

[45]

Ye X, Honda K, Morimoto Y, Okano K, Ohtake H. Direct conversion of glucose to malate by synthetic metabolic engineering. J Biotechnol, 2013, 164(1): 34-40.

[46]

Zambanini T, Sarikaya E, Kleineberg W, Buescher JM, Meurer G, Wierckx N, Blank LM. Efficient malic acid production from glycerol with Ustilago trichophora TZ1. Biotechnol Biofuels, 2016, 9: 67.

[47]

Zambanini T, Hosseinpour Tehrani H, Geiser E, Sonntag CK, Buescher JM, Meurer G, Wierckx N, Blank LM. Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production. Metab Eng Commun, 2017, 4: 12-21.

[48]

Zhang J, Zhang J. The filamentous fungal pellet and forces driving its formation. Crit Rev Biotechnol, 2016, 36(6): 1066-1077.

[49]

Zhang X, Wang X, Shanmugam KT, Ingram LO. L-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol, 2011, 77(2): 427-434.

[50]

Zhou Z, Du G, Hua Z, Zhou J, Chen J. Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresour Technol, 2011, 102(20): 9345-9349.

Funding

the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(32021005)

the Key Program of the National Natural Science Foundation of China(22038005)

the Provincial Outstanding Youth Foundation of Jiangsu Province(BK20211529)

the Fundamental Research Funds for the Central Universities(JUSRP22031)

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/