Laccase-catalyzed lignin depolymerization in deep eutectic solvents: challenges and prospects

Man Zhou , Olugbenga Abiola Fakayode , Manni Ren , Haoxin Li , Jiakang Liang , Abu ElGasim Ahmed Yagoub , Zhiliang Fan , Cunshan Zhou

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 21

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 21 DOI: 10.1186/s40643-023-00640-9
Review

Laccase-catalyzed lignin depolymerization in deep eutectic solvents: challenges and prospects

Author information +
History +
PDF

Abstract

Lignin has enormous potential as a renewable feedstock for depolymerizing to numerous high-value chemicals. However, lignin depolymerization is challenging owing to its recalcitrant, heterogenous, and limited water-soluble nature. From the standpoint of environmental friendliness and sustainability, enzymatic depolymerization of lignin is of great significance. Notably, laccases play an essential role in the enzymatic depolymerization of lignin and are considered the ultimate green catalysts. Deep eutectic solvent (DES), an efficient media in biocatalysis, are increasingly recognized as the newest and utmost green solvent that highly dissolves lignin. This review centers on a lignin depolymerization strategy by harnessing the good lignin fractionating capability of DES and the high substrate and product selectivity of laccase. Recent progress and insights into the laccase–DES interactions, protein engineering strategies for improving DES compatibility with laccase, and controlling the product selectivity of lignin degradation by laccase or in DES systems are extensively provided. Lastly, the challenges and prospects of the alliance between DES and laccase for lignin depolymerization are discussed. The collaboration of laccase and DES provides a great opportunity to develop an enzymatic route for lignin depolymerization.

Keywords

Lignin depolymerization / Deep eutectic solvents / Laccase / Biocatalysis / Lignocellulosic biomass

Cite this article

Download citation ▾
Man Zhou, Olugbenga Abiola Fakayode, Manni Ren, Haoxin Li, Jiakang Liang, Abu ElGasim Ahmed Yagoub, Zhiliang Fan, Cunshan Zhou. Laccase-catalyzed lignin depolymerization in deep eutectic solvents: challenges and prospects. Bioresources and Bioprocessing, 2023, 10(1): 21 DOI:10.1186/s40643-023-00640-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agrawal K, Chaturvedi V, Verma P (2018) Fungal laccase discovered but yet undiscovered. Bioresources Bioprocess. https://doi.org/10.1186/s40643-018-0190-z

[2]

Alizadeh V, Malberg F, Padua AAH, Kirchner B. Are there magic compositions in deep eutectic solvents? effects of composition and water content in choline chloride/ethylene glycol from ab initio molecular dynamics. J Phys Chem B, 2020, 124(34): 7433-7443.

[3]

Bittner JP, Zhang N, Huang L, Domínguez de María P, Jakobtorweihen S, Kara S. Impact of deep eutectic solvents (DESs) and individual DES components on alcohol dehydrogenase catalysis: connecting experimental data and molecular dynamics simulations. Green Chem, 2022, 24(3): 1120-1131.

[4]

Bornscheuer UT, Hauer B, Jaeger KE, Schwaneberg U. Directed evolution empowered redesign of natural proteins for the sustainable production of chemicals and pharmaceuticals. Angew Chem-Int Edit, 2019, 58(1): 36-40.

[5]

Brugnari T, Braga DM, dos Santos CSA, Torres BHC, Modkovski TA, Haminiuk CWI, Maciel GM (2021) Laccases as green and versatile biocatalysts: from lab to enzyme market—an overview. Bioresources Bioprocess. https://doi.org/10.1186/s40643-021-00484-1

[6]

Canas AI, Camarero S. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv, 2010, 28(6): 694-705.

[7]

Chan JC, Paice M, Zhang X. Enzymatic oxidation of lignin: challenges and barriers toward practical applications. ChemCatChem, 2019, 12(2): 401-425.

[8]

Chan JC, Zhang B, Martinez M, Kuruba B, Brozik J, Kang C, Zhang X. Structural studies of MyceliophthoraThermophilaLaccase in the presence of deep eutectic solvents. Enzyme Microb Technol, 2021, 150.

[9]

Cheng F, Zhu L, Schwaneberg U. Directed evolution 2 0: improving and deciphering enzyme properties. Chem Commun, 2015, 51(48): 9760-9772.

[10]

Chio C, Sain M, Qin W. Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sust Energ Rev, 2019, 107: 232-249.

[11]

Curran LKLMC, Pham LTM, Sale KL, Simmons BA. Review of advances in the development of laccases for the valorization of lignin to enable the production of lignocellulosic biofuels and bioproducts. Biotechnol Adv, 2022, 54.

[12]

da Cruz MGA, Rodrigues BVM, Ristic A, Budnyk S, Das S, Slabon A. On the product selectivity in the electrochemical reductive cleavage of 2-phenoxyacetophenone, a lignin model compound. Green Chem Lett Rev, 2022, 15(1): 151-159.

[13]

Delorme AE, Andanson JM, Verney V. Improving laccase thermostability with aqueous natural deep eutectic solvents. Int J Biol Macromol, 2020, 163: 919-926.

[14]

Deng K, Zeng J, Cheng G, Gao J, Sale KL, Simmons BA, Singh AK, Adams PD, Northen TR. Rapid characterization of the activities of lignin-modifying enzymes based on nanostructure-initiator mass spectrometry (NIMS). Biotechnol Biofuels, 2018, 11: 266.

[15]

Di Marino D, Stöckmann D, Kriescher S, Stiefel S, Wessling M. Electrochemical depolymerisation of lignin in a deep eutectic solvent. Green Chem, 2016, 18(22): 6021-6028.

[16]

Di Marino D, Aniko V, Stocco A, Kriescher S, Wessling M. Emulsion electro-oxidation of kraft lignin. Green Chem, 2017, 19(20): 4778-4784.

[17]

Ding Z, Guan F, Xu G, Wang Y, Yan Y, Zhang W, Wu N, Yao B, Huang H, Tuller T, Tian J. MPEPE, a predictive approach to improve protein expression in E. coli based on deep learning. Comput Struct Biotechnol J, 2022, 20: 1142-1153.

[18]

Fakayode OA, Aboagarib EAA, Yan D, Li M, Wahia H, Mustapha AT, Zhou C, Ma H. Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: parametric screening and optimization via response surface methodology. Energy, 2020, 203.

[19]

Ghobadi R, Divsalar A. Enzymatic behavior of bovine liver catalase in aqueous medium of sugar based deep eutectic solvents. J Mol Liq, 2020, 310.

[20]

Gutiérrez A, Atilhan M, Aparicio S. Molecular dynamics study on water confinement in deep eutectic solvents. J Mol Liquids, 2021, 339.

[21]

Hammond OS, Bowron DT, Edler KJ. The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution. Angew Chem Int Ed Engl, 2017, 56(33): 9782-9785.

[22]

Huang L, Bittner JP, Dominguez de Maria P, Jakobtorweihen S, Kara S. Modeling alcohol dehydrogenase catalysis in deep eutectic solvent/water mixtures. ChemBioChem, 2020, 21(6): 811-817.

[23]

Islam A, Zhang ST, Tonin J, Hinderks F, Deurloo R, Urlacher YN, Hagedoorn VB. Isothermal titration calorimetric assessment of lignin conversion by laccases. Biotechnol Bioeng, 2022, 119(2): 493-503.

[24]

Itoh T, Takagi Y. Laccase-catalyzed reactions in ionic liquids for green sustainable chemistry. ACS Sustain Chem Eng, 2021, 9(4): 1443-1458.

[25]

Ji Q, Yu X, Wu P, Yagoub AE-GA, Chen L, Abdullateef Taiye M, Zhou C. Pretreatment of sugarcane bagasse with deep eutectic solvents affect the structure and morphology of lignin. Ind Crop Prod, 2021, 173.

[26]

Khlupova M, Vasil’eva I, Shumakovich G, Zaitseva E, Chertkov V, Shestakova A, Morozova O, Yaropolov A. Enzymatic polymerization of dihydroquercetin (Taxifolin) in betaine-based deep eutectic solvent and product characterization. Catalysts, 2021, 11(5): 639.

[27]

Khodaverdian S, Dabirmanesh B, Heydari A, Dashtban-Moghadam E, Khajeh K, Ghazi F. Activity, stability and structure of laccase in betaine based natural deep eutectic solvents. Int J Biol Macromol, 2018, 107(Pt B): 2574-2579.

[28]

Kim KH, Eudes A, Jeong K, Yoo CG, Kim CS, Ragauskas A. Integration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery. Proc Natl Acad Sci USA, 2019, 116(28): 13816-13824.

[29]

Kontro J, Maltari R, Mikkila J, Kahkonen M, Makela MR, Hilden K, Nousiainen P, Sipila J. Applicability of recombinant laccases from the white-rot fungus obba rivulosa for mediator-promoted oxidation of biorefinery lignin at low pH. Front Bioeng Biotechnol, 2020, 8.

[30]

Lan W, Amiri MT, Hunston CM, Luterbacher JS. Protection group effects during alpha, gamma-diol lignin stabilization promote high-selectivity monomer production. Angew Chem Int Ed Engl, 2018, 57(5): 1356-1360.

[31]

Lan W, de Bueren JB, Luterbacher JS. Highly selective oxidation and depolymerization of alpha, gamma-diol-protected lignin. Angew Chem Int Ed Engl, 2019, 58(9): 2649-2654.

[32]

Lehmann C, Bocola M, Streit WR, Martinez R, Schwaneberg U. Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution. Appl Microbiol Biotechnol, 2014, 98(12): 5775-5785.

[33]

Li Z-M, Long J-X, Zeng Q, Wu Y-H, Cao M-L, Liu S-J, Li X-H. Production of Methyl p-Hydroxycinnamate by selective tailoring of herbaceous lignin using metal-based deep eutectic solvents (des) as catalyst. Ind Eng Chem Res, 2020, 59(39): 17328-17337.

[34]

Li Q, Dong Y, Hammond KD, Wan C. Revealing the role of hydrogen bonding interactions and supramolecular complexes in lignin dissolution by deep eutectic solvents. J Mol Liq, 2021, 344.

[35]

Li H, Liang J, Chen L, Ren M, Zhou C. Utilization of walnut shell by deep eutectic solvents: enzymatic digestion of cellulose and preparation of lignin nanoparticles. Indust Crops Product, 2023, 192.

[36]

Liu H, Zhu L, Bocola M, Chen N, Spiess AC, Schwaneberg U. Directed laccase evolution for improved ionic liquid resistance. Green Chem, 2013, 15(5): 1348.

[37]

Liu D, Yan X, Zhuo S, Si M, Liu M, Wang S, Ren L, Chai L, Shi Y. Pandoraea sp. B-6 assists the deep eutectic solvent pretreatment of rice straw via promoting lignin depolymerization. Bioresour Technol, 2018, 257: 62-68.

[38]

Liu Q, Zhao X, Dongkun Y, Haitao Y, Zhang Y, Xue Z, Tiancheng M. Novel deep eutectic solvents with different functional groups towards highly efficient dissolution of lignin. Green Chem, 2019, 21(19): 5291-5297.

[39]

Liu H, Zhu L, Wallraf A-M, Räuber C, Grande PM, Anders N, Gertler C, Werner B, Klankermayer J, Leitner W, Schwaneberg U. Depolymerization of laccase-oxidized lignin in aqueous alkaline solution at 37 °C. ACS Sustain Chem Eng, 2019, 7(13): 11150-11156.

[40]

Liu S, Prade F, Wilkins RA. Exploring lignin depolymerization by a bi-enzyme system containing aryl alcohol oxidase and lignin peroxidase in aqueous biocompatible ionic liquids cholinium glycinate. Bioresour Technol, 2021, 338.

[41]

Liu C, Wang S, Wang B, Song G. Catalytic hydrogenolysis of castor seeds C-lignin in deep eutectic solvents. Ind Crop Prod, 2021, 169.

[42]

Liu Y, Deak N, Wang Z, Yu H, Hameleers L, Jurak E, Deuss PJ, Barta K. Tunable and functional deep eutectic solvents for lignocellulose valorization. Nat Commun, 2021, 12(1): 5424.

[43]

Ma Q, Ji Q, Chen L, Zhu Z, Tu S, Okonkwo CE, Out P, Zhou C. Multimode ultrasound and ternary deep eutectic solvent sequential pretreatments enhanced the enzymatic saccharification of corncob biomass. Indust Crops Products, 2022, 188: 115574.

[44]

Makkliang F, Siriwarin B, Yusakul G, Phaisan S, Sakdamas A, Chuphol N, Putalun W, Sakamoto S. Biocompatible natural deep eutectic solvent-based extraction and cellulolytic enzyme-mediated transformation of Pueraria mirifica isoflavones: a sustainable approach for increasing health-bioactive constituents. Bioresource Bioprocess, 2021

[45]

Malaeke H, Housaindokht MR, Monhemi H, Izadyar M. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. J Mol Liq, 2018, 263: 193-199.

[46]

Mate DM, Alcalde M. Laccase engineering: from rational design to directed evolution. Biotechnol Adv, 2015, 33(1): 25-40.

[47]

Mate DM, Alcalde M. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol, 2017, 10(6): 1457-1467.

[48]

Mateljak I, Monza E, Lucas MF, Guallar V, Aleksejeva O, Ludwig R, Leech D, Shleev S, Alcalde M. Increasing Redox potential, redox mediator activity, and stability in a fungal laccase by computer-guided mutagenesis and directed evolution. ACS Catal, 2019, 9(5): 4561-4572.

[49]

Mojtabavi S, Jafari M, Samadi N, Mehrnejad F, Ali Faramarzi M. Insights into the molecular-Level details of betaine interactions with Laccase under various thermal conditions. J Mol Liq, 2021, 339.

[50]

Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS. Can laccases catalyze bond cleavage in lignin?. Biotechnol Adv, 2015, 33(1): 13-24.

[51]

Nian B, Cao C, Liu Y. Activation and stabilization of Candida antarctica lipase B in choline chloride-glycerol-water binary system via tailoring the hydrogen-bonding interaction. Int J Biol Macromol, 2019, 136: 1086-1095.

[52]

Novoa C, Dhoke GV, Mate DM, Martinez R, Haarmann T, Schreiter M, Eidner J, Schwerdtfeger R, Lorenz P, Davari MD, Jakob F, Schwaneberg U. KnowVolution of a Fungal Laccase toward alkaline pH. ChemBioChem, 2019, 20(11): 1458-1466.

[53]

Patzold M, Siebenhaller S, Kara S, Liese A, Syldatk C, Holtmann D. Deep eutectic solvents as efficient solvents in biocatalysis. Trends Biotechnol, 2019, 37(9): 943-959.

[54]

Peng F, Zhao Y, Li FZ, Zong MH, Lou WY (2018) The effect of deep eutectic solvents on the asymmetric hydrolysis of styrene oxide by mung bean epoxide hydrolases. Bioresources Bioprocess. https://doi.org/10.1186/s40643-018-0191-y

[55]

Perna V, Agger JW, Andersen ML, Holck J, Meyer AS. Laccase induced lignin radical formation kinetics evaluated by electron paramagnetic resonance spectroscopy. ACS Sustain Chem Eng, 2019, 7(12): 10425-10434.

[56]

Piscitelli A, Del Vecchio C, Faraco V, Giardina P, Macellaro G, Miele A, Pezzella C, Sannia G. Fungal laccases: versatile tools for lignocellulose transformation. C R Biol, 2011, 334(11): 789-794.

[57]

Pramanik S, Semenova MV, Zorov AMR, Korotkova IN, Sinitsyn O, Davari MD. An engineered cellobiohydrolase I for sustainable degradation of lignocellulosic biomass. Biotechnol Bioeng, 2021, 118(10): 4014-4027.

[58]

Pramanik S, Cui H, Dhoke GV, Yildiz CB, Vedder M, Jaeger K-E, Schwaneberg U, Davari MD. How does surface charge engineering of bacillus subtilis lipase a improve ionic liquid resistance? lessons learned from molecular dynamics simulations. ACS Sustain Chem Eng, 2022, 10(8): 2689-2698.

[59]

Qiao Q, Shi J, Shao Q. The multiscale solvation effect on the reactivity of beta-O-4 of lignin dimers in deep eutectic solvents. Phys Chem Chem Phys, 2021, 23(45): 25699-25705.

[60]

Rahimi A, Ulbrich A, Coon JJ, Stahl SS. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature, 2014, 515(7526): 249-252.

[61]

Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ. Designer laccases: a vogue for high-potential fungal enzymes?. Trends Biotechnol, 2010, 28(2): 63-72.

[62]

Rozas S, Benito C, Alcalde R, Atilhan M, Aparicio S. Insights on the water effect on deep eutectic solvents properties and structuring: the archetypical case of choline chloride + ethylene glycol. J Mol Liq, 2021, 344.

[63]

Sanchez-Fernandez A, Jackson AJ. Proteins in deep eutectic solvents: structure, dynamics and interactions with the solvent eutectic solvents and stress in plants, 2021, Elsevier: Academic press.

[64]

Sanchez-Fernandez A, Jackson AJ, Prevost SF, Doutch JJ, Edler KJ. Long-range electrostatic colloidal interactions and specific ion effects in deep eutectic solvents. J Am Chem Soc, 2021, 143(35): 14158-14168.

[65]

Sheldon RA. Biocatalysis in ionic liquids: state-of-the-union. Green Chem, 2021, 23(21): 8406-8427.

[66]

Shen ZZ, Van Lehn RC. Solvent selection for the separation of lignin-derived monomers using the conductor-like screening model for real solvents. Ind Eng Chem Res, 2020, 59(16): 7755-7764.

[67]

Shen X, Xin Y, Liu H, Han B. Product-oriented direct cleavage of chemical linkages in lignin. Chemsuschem, 2020, 13(17): 4367-4381.

[68]

Shuai L, Amiri MT, Questell-Santiago YM, Heroguel F, Li YD, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 2016, 354(6310): 329-333.

[69]

Soares B, Silvestre AJD, Rodrigues Pinto PC, Freire CSR, Coutinho JAP. Hydrotropy and cosolvency in lignin solubilization with deep eutectic solvents. ACS Sustain Chem Eng, 2019, 7(14): 12485-12493.

[70]

Stevens JC, Shi J. Biocatalysis in ionic liquids for lignin valorization: opportunities and recent developments. Biotechnol Adv, 2019, 37(8

[71]

Stevens JC, Shi J. modifying surface charges of a thermophilic laccase toward improving activity and stability in ionic liquid. Front Bioeng Biotechnol, 2022, 10.

[72]

Stevens JC, Das L, Mobley JK, Asare SO, Lynn BC, Rodgers DW, Shi J. Understanding laccase-ionic liquid interactions toward biocatalytic lignin conversion in aqueous ionic liquids. ACS Sustain Chem Eng, 2019, 7(19): 15928-15938.

[73]

Toledo ML, Pereira MM, Freire MG, Silva JPA, Coutinho JAP, Tavares APM. Laccase activation in deep eutectic solvents. ACS Sustain Chem Eng, 2019, 7(13): 11806-11814.

[74]

Valles M, Kamaruddin AF, Wong LS, Blanford CF. Inhibition in multicopper oxidases: a critical review. Catal Sci Technol, 2020, 10(16): 5386-5410.

[75]

Varriale S, Delorme AE, Andanson JM, Devemy J, Malfreyt P, Verney V, Pezzella C. Enhancing the thermostability of engineered laccases in aqueous betaine-based natural deep eutectic solvents. ACS Sustain Chem Eng, 2022, 10(1): 572-581.

[76]

Vicente AI, Viña-Gonzalez J, Mateljak I, Monza E, Lucas F, Guallar V, Alcalde M. Enhancing thermostability by modifying flexible surface loops in an evolved high-redox potential laccase. AIChE J, 2019, 66(3

[77]

Vilbert AC, Liu Y, Dai H, Lu Y. Recent advances in tuning redox properties of electron transfer centers in metalloenzymes catalyzing oxygen reduction reaction and H2 oxidation important for fuel cells design. Curr Opin Electrochem, 2021, 30.

[78]

Vuong TV, Singh R, Eltis LD, Master ER. The comparative abilities of a small laccase and a dye-decoloring peroxidase from the same bacterium to transform natural and technical lignins. Front Microbiol, 2021, 12.

[79]

Wallraf A-M, Liu H, Zhu L, Khalfallah G, Simons C, Alibiglou H, Davari MD, Schwaneberg U. A loop engineering strategy improves laccase lcc2 activity in ionic liquid and aqueous solution. Green Chem, 2018, 20(12): 2801-2812.

[80]

Wang J, Yan K, Wang W, Zhou Y (2020) A method for high-throughput screening hydrolase of lignin β-aryl ether linkage from directed evolution by glutathione (GSH) assay. Bioresour Bioprocess. https://doi.org/10.1186/s40643-020-00317-7

[81]

Yaguchi AL, Lee SJ, Blenner MA. Synthetic biology towards engineering microbial lignin biotransformation. Trends Biotechnol, 2021, 39(10): 1037-1064.

[82]

Yang Y, Song WY, Hur HG, Kim TY, Ghatge S. Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin. Int J Biol Macromol, 2019, 124: 200-208.

[83]

Yu Q, Song Z, Chen X, Fan J, Clark JH, Wang Z, Sun Y, Yuan Z. A methanol–choline chloride based deep eutectic solvent enhances the catalytic oxidation of lignin into acetovanillone and acetic acid. Green Chem, 2020, 22(19): 6415-6423.

[84]

Yu Q, Wang Y, Chen X, Wang F, Tian X, Gao Y, Zhang Q. Deep eutectic solvent assists Bacillusaustralimaris to transform alkali lignin waste into small aromatic compounds. J Clean Product, 2021, 320: 128719.

[85]

Zevallos Torres LA, Lorenci Woiciechowski A, de Andrade Tanobe VO, Karp SG, Guimarães Lorenci LC, Faulds C, Soccol CR. Lignin as a potential source of high-added value compounds: a review. J Clean Product, 2020, 263: 121499.

[86]

Zhang N, Steininger F, Meyer L-E, Koren K, Kara S. Can deep eutectic solvents sustain oxygen-dependent bioprocesses?—measurements of oxygen transfer rates. ACS Sustain Chem Eng, 2021, 9(25): 8347-8353.

[87]

Zhao H. What do we learn from enzyme behaviors in organic solvents?—Structural functionalization of ionic liquids for enzyme activation and stabilization. Biotechnol Adv, 2020, 45.

[88]

Zhou M, Guo P, Wang T, Gao L, Yin H, Cai C, Gu J, Lu X. Metagenomic mining pectinolytic microbes and enzymes from an apple pomace-adapted compost microbial community. Biotechnol Biofuels, 2017, 10: 198.

[89]

Zhou M, Fakayode OA, Ahmed Yagoub AE, Ji Q, Zhou C. Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization. Renew Sust Energ Rev, 2022, 156.

[90]

Zhou M, Tao L, Russell P, Britt RD, Kasuga T, X, Fan Z. The role of lignin in the conversion of wheat straw to cellobionic acid by Neurospora crassa HL10. Indust Crops Product, 2022, 188: 115650.

[91]

Zhou M, Fakayode OA, Ren M, Li H, Liang J, Zhou C (2023) Green and sustainable extraction of lignin by deep eutectic solvent, its antioxidant activity, and applications in the food industry. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2023.2181762

[92]

Zhu D, Liang N, Zhang R, Ahmad F, Zhang W, Yang B, Wu J, Geng A, Gabriel M, Sun J. Insight into depolymerization mechanism of bacterial laccase for lignin. ACS Sustain Chem Eng, 2020, 8(34): 12920-12933.

Funding

National Natural Science Foundation of China(32072174)

General Project of Natural Science Research in Colleges and Universities of Jiangsu(21KJB550010)

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/