Engineering a norcoclaurine synthase for one-step synthesis of (S)-1-aryl-tetrahydroisoquinolines

Man Zhang , Zheng-Yu Huang , Ying Su , Fei-Fei Chen , Qi Chen , Jian-He Xu , Gao-Wei Zheng

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 15

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 15 DOI: 10.1186/s40643-023-00637-4
Research

Engineering a norcoclaurine synthase for one-step synthesis of (S)-1-aryl-tetrahydroisoquinolines

Author information +
History +
PDF

Abstract

Tetrahydroisoquinoline alkaloids (THIQAs) are ubiquitous compounds with important pharmaceutical and biological activity. Their key N-heterocyclic structural motifs are synthesised via Pictet–Spengler (P–S) reaction by norcoclaurine synthases (NCS) in plants. The synthesis of 1-aryl-tetrahydroisoquinoline alkaloids has attracted increasing attention due to their antitumor and antivirus activities. Herein, the L68T/M97V mutant of NCS from Thalictrum flavum with improved activity was developed by semi-rational design. This mutant not only showed higher catalytic performance (> 96% conversion) toward benzaldehyde and dopamine over the wild-type enzyme, but also catalysed the P–S reaction of the bulky substrate 4-biphenylaldehyde and dopamine with high conversion (> 99%) for the effective synthesis of 1-aryl-THIQA. In terms of stereoselectivity, all products synthesised by the L68T/M97V mutant showed high optical purity (92–99% enantiomeric excess).

Keywords

Biocatalysis / Norcoclaurine synthase / Protein engineering / Pictet–Spengler reaction / Tetrahydroisoquinoline alkaloids

Cite this article

Download citation ▾
Man Zhang, Zheng-Yu Huang, Ying Su, Fei-Fei Chen, Qi Chen, Jian-He Xu, Gao-Wei Zheng. Engineering a norcoclaurine synthase for one-step synthesis of (S)-1-aryl-tetrahydroisoquinolines. Bioresources and Bioprocessing, 2023, 10(1): 15 DOI:10.1186/s40643-023-00637-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bonamore A, Rovardi I, Gasparrini F, Baiocco P, Barba M, Molinaro C, Botta B, Boffi A, Macone A. An enzymatic, stereoselective synthesis of (S)-norcoclaurine. Green Chem, 2010, 12(9): 1623-1627.

[2]

Bruno E, Buemi MR, Di Fiore A, De Luca L, Ferro S, Angeli A, Cirilli R, Sadutto D, Alterio V, Monti SM, Supuran CT, De Simone G, Gitto R. Probing molecular interactions between human carbonic anhydrases (hCAs) and a novel class of benzenesulfonamides. J Med Chem, 2017, 60(10): 4316-4326.

[3]

Cheng P, Huang N, Jiang Z-Y, Zhang Q, Zheng Y-T, Chen J-J, Zhang X-M, Ma Y-B. 1-aryl-tetrahydroisoquinoline analogs as active anti-HIV agents in vitro. Bioorg Med Chem Lett, 2008, 18(7): 2475-2478.

[4]

Dickey RM, Forti AM, Kunjapur AM. Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. Bioresour Bioprocess, 2021, 8(1): 91.

[5]

Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc, 2016, 11(5): 905-919.

[6]

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Walker JM. Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook. Springer protocols handbooks, 2005, New York: Humana Press, 571-601.

[7]

Humphreys IR, Pei JM, Baek M, Krishnakumar A, Anishchenko I, Ovchinnikov S, Zhang J, Ness TJ, Banjade S, Bagde SR, Stancheva VG, Li XH, Liu KX, Zheng Z, Barrero DJ, Roy U, Kuper J, Fernandez IS, Szakal B, Branzei D, Rizo J, Kisker C, Greene EC, Biggins S, Keeney S, Miller EA, Fromme JC, Hendrickson TL, Cong Q, Baker D. Computed structures of core eukaryotic protein complexes. Science, 2021, 374(6573): eabm4805.

[8]

Lechner H, Soriano P, Poschner R, Hailes HC, Ward JM, Kroutil W. Library of norcoclaurine synthases and their immobilization for biocatalytic transformations. Biotechnol J, 2018, 13(3): 9.

[9]

Lee E-J, Facchini P. Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell, 2010, 22(10): 3489-3503.

[10]

Li L, Liu T, Zhang X, Hou X, Dong H, Li X, Ren W, Wang Y. Catalyst-free and atom-economical 1,3-dipolar cycloaddition of C, N-cyclic azomethine imines: facile synthesis of isoquinoline-fused spirocycles. Green Synth Catal, 2022, 3(1): 69-78.

[11]

Lichman BR, Sula A, Pesnot T, Hailes HC, Ward JM, Keep NH. Structural evidence for the dopamine-first mechanism of norcoclaurine synthase. Biochemistry, 2017, 56(40): 5274-5277.

[12]

Lichman BR, Zhao J, Hailes HC, Ward JM. Enzyme catalysed Pictet–Spengler formation of chiral 1,1'-disubstituted- and spiro-tetrahydro-isoquinolines. Nat Commun, 2017, 8: 14883.

[13]

Luk LYP, Bunn S, Liscombe DK, Facchini PJ, Tanner ME. Mechanistic studies on norcoclaurine synthase of benzylisoquinoline alkaloid biosynthesis: an enzymatic Pictet–Spengler reaction. Biochemistry, 2007, 46(35): 10153-10161.

[14]

Minami H, Dubouzet E, Iwasa K, Sato F. Functional analysis of norcoclaurine synthase in Coptis japonica. J Biol Chem, 2007, 282(9): 6274-6282.

[15]

Nan B, Yang C, Li L, Ye H, Yan H, Wang M, Yuan Y. Allicin alleviated acrylamide-induced NLRP3 inflammasome activation via oxidative stress and endoplasmic reticulum stress in Kupffer cells and SD rats liver. Food Chem Toxicol, 2021, 148: 111937.

[16]

Pan X, Huan Y, Shen Z, Liu Z. Synthesis and biological evaluation of novel tetrahydroisoquinoline-C-aryl glucosides as SGLT2 inhibitors for the treatment of type 2 diabetes. Eur J Med Chem, 2016, 114: 89-100.

[17]

Pasquo A, Bonamore A, Franceschini S, Macone A, Boffi A, Ilari A. Cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from Thalictrum flavum. Acta Crystallogr F-Struct Biol Commun, 2008, 64: 281-283.

[18]

Roddan R, Gygli G, Sula A, Mendez-Sanchez D, Hailes HC. The acceptance and kinetic resolution of alpha-methyl substituted aldehydes by norcoclaurine zynthases. ACS Catal, 2019, 9(10): 9640-9649.

[19]

Roddan R, Sula A, Mendez-Sanchez D, Subrizi F, Lichman BR, Broomfield J, Richter M, Andexer JN, Ward JM, Keep NH, Hailes HC. Single step syntheses of (1S)-aryl-tetrahydroisoquinolines by norcoclaurine synthases. Commun Chem, 2020, 3(1): 170.

[20]

Ruff BM, Braese S, O'Connor SE. Biocatalytic production of tetrahydro-isoquinolines. Tetrahedron Lett, 2012, 53(9): 1071-1074.

[21]

Samanani N, Facchini PJ. Purification and characterization of norcoclaurine synthase-The first committed enzyme in benzylisoquinoline alkaloid biosynthesis in plants. J Biol Chem, 2002, 277(37): 33878-33883.

[22]

Samanani N, Liscombe DK, Facchini PJ. Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J, 2004, 40(2): 302-313.

[23]

Tang P, Wang H, Zhang W, Chen F-E. Asymmetric catalytic hydrogenation of imines and enamines in natural product synthesis. Green Synth Catal, 2020, 1(1): 26-41.

[24]

Wang XZ, Kong DK, Huang TT, Deng ZX, Lin SJ. StnK2 catalysing a Pictet–Spengler reaction involved in the biosynthesis of the antitumor reagent streptonigrin. Org Biomol Chem, 2018, 16(47): 9124-9128.

[25]

Yamazaki Y, Urano A, Sudo H, Kitajima M, Takayama H, Yamazaki M, Aimi N, Saito K. Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry, 2003, 62(3): 461-470.

[26]

Yang L, Zhu J, Sun C, Deng Z, Qu X. Biosynthesis of plant tetrahydroisoquinoline alkaloids through an imine reductase route. Chem Sci, 2020, 11(2): 364-371.

[27]

Yu J, Zhou Y, Tanaka I, Yao M. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics, 2010, 26(1): 46-52.

[28]

Zhao J, Mendez-Sanchez D, Roddan R, Ward JM, Hailes HC. Norcoclaurine synthase-mediated stereoselective synthesis of 1,1'-disubstituted, spiro- and bis-tetrahydroisoquinoline alkaloids. ACS Catal, 2021, 11(1): 131-138.

[29]

Zhu J, Tan H, Yang L, Dai Z, Zhu L, Ma H, Deng Z, Tian Z, Qu X. Enantioselective synthesis of 1-aryl-substituted tetrahydroisoquinolines employing imine reductase. ACS Catal, 2017, 7(10): 7003-7007.

Funding

National Key Research and Development Program of China(2019YFA09005000)

National Natural Science Foundation of China(21878085)

Fundamental Research Funds for Central Universities of the Central South University(22221818014)

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/