Advances in bioleaching of waste lithium batteries under metal ion stress

Xu Zhang , Hongjie Shi , Ningjie Tan , Minglong Zhu , Wensong Tan , Damilola Daramola , Tingyue Gu

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 19

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 19 DOI: 10.1186/s40643-023-00636-5
Review

Advances in bioleaching of waste lithium batteries under metal ion stress

Author information +
History +
PDF

Abstract

In modern societies, the accumulation of vast amounts of waste Li-ion batteries (WLIBs) is a grave concern. Bioleaching has great potential for the economic recovery of valuable metals from various electronic wastes. It has been successfully applied in mining on commercial scales. Bioleaching of WLIBs can not only recover valuable metals but also prevent environmental pollution. Many acidophilic microorganisms (APM) have been used in bioleaching of natural ores and urban mines. However, the activities of the growth and metabolism of APM are seriously inhibited by the high concentrations of heavy metal ions released by the bio-solubilization process, which slows down bioleaching over time. Only when the response mechanism of APM to harsh conditions is well understood, effective strategies to address this critical operational hurdle can be obtained. In this review, a multi-scale approach is used to summarize studies on the characteristics of bioleaching processes under metal ion stress. The response mechanisms of bacteria, including the mRNA expression levels of intracellular genes related to heavy metal ion resistance, are also reviewed. Alleviation of metal ion stress via addition of chemicals, such as spermine and glutathione is discussed. Monitoring using electrochemical characteristics of APM biofilms under metal ion stress is explored. In conclusion, effective engineering strategies can be proposed based on a deep understanding of the response mechanisms of APM to metal ion stress, which have been used to improve bioleaching efficiency effectively in lab tests. It is very important to engineer new bioleaching strains with high resistance to metal ions using gene editing and synthetic biotechnology in the near future.

Keywords

Bioleaching / Metal ion stress / Biofilm / Waste lithium battery / Electrochemistry

Cite this article

Download citation ▾
Xu Zhang, Hongjie Shi, Ningjie Tan, Minglong Zhu, Wensong Tan, Damilola Daramola, Tingyue Gu. Advances in bioleaching of waste lithium batteries under metal ion stress. Bioresources and Bioprocessing, 2023, 10(1): 19 DOI:10.1186/s40643-023-00636-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdallah M, Benoliel C, Drider D, Dhulster P, Chihib N (2014) Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch. Microbiol. 196(7): 453–472. https://doi.org/10.1007/s00203-014-0983-1

[2]

Alshiyab H, Kalil MS, Hamid AA, Wan Yusoff WM. Effect of salts addition on hydrogen production by C. acetobutylicum. Pak J Biol Sci, 2008, 11(18): 2193-2200.

[3]

Bahaloo-Horeh N, Mousavi SM, Baniasadi M. Use of adapted metal tolerant Aspergillus Niger to enhanced bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. J Clean Prod, 2018, 197(1): 1546-1557.

[4]

Ballal A, Basu B, Apte SK. The Kdp-ATPase system and its regulation. J Biosci, 2007, 32(3): 559-568.

[5]

Banerjee I, Burrell B, Reed C, West AC, Banta S. Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications. Curr Opin Biotechnol, 2017, 45: 144-155.

[6]

Baniasadi M, Vakilchap F, Bahaloo-Horeh N, Mousavi SM, Farnaud S. Advances in bioleaching as a sustainable method for metal recovery from e-waste: a review. J Ind Eng Chem, 2019, 76: 75-90.

[7]

Bathe S, Norris PR. Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus. Appl Environ Microbiol, 2007, 73(8): 2491-2497.

[8]

Beese P, Venzlaff H, Srinivasan J, Garrelfs J, Stratmann M, Mayrhofer K. Monitoring of anaerobic microbially influenced corrosion via electrochemical frequency modulation. Electrochim Acta, 2013, 105: 239-247.

[9]

Bellenberg S, Diaz M, Noel N, Sand W, Poetsch A, Guiliani N, Vera M. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces. Res Microbiol, 2014, 165(9): 773-781.

[10]

Bellenberg S, Barthen R, Boretska M, Zhang RY, Sand W, Vera M. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species. Appl Microbiol Biotechnol, 2015, 99(3): 1435-1449.

[11]

Besemer K, Singer G, Limberger R, Chlup AK, Hochedlinger G, Baranyi C, Battin TJ. Biophysical controls on community succession in stream biofilms. Appl Environ Microbiol, 2007, 73(15): 4966-4974.

[12]

Biswal BK, Jadhav UU, Madhaiyan M, Ji L, Yang EH, Cao B. Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustain Chem Eng, 2018, 6(9): 12343-12352.

[13]

Boxall NJ, Cheng KY, Bruckard W, Kaksonen AH. Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. J Hazard Mater, 2018, 360: 504-511.

[14]

Brierley CL, Brierley JA. Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol, 2013, 97(17): 7543-7552.

[15]

Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol, 1995, 17(6): 1153-1166.

[16]

Bruins MR, Kapil S, Oehme FW. Microbial resistance to metals in the environment. Ecotoxicol Environ Saf, 2000, 45(3): 198-207.

[17]

Busenlehner L, Weng T, Penner-Hahn J, Giedroc D. Elucidation of primary (α3N) and vestigial (α5) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/ SmtB metal sensor proteins. J Mol Biol, 2002, 319(3): 685-701.

[18]

Cai X, Tian L, Chen C, Huang W, Yu Y, Liu C, Yang B, Lu X, Mao Y. Phylogenetically divergent bacteria consortium from neutral activated sludge showed heightened potential on bioleaching spent lithium-ion batteries. Ecotoxicol Environ Saf, 2021, 223: 112592.

[19]

Castro C, Zhang R, Liu J, Bellenberg S, Neu TR, Donati E, Sand W, Vera M. Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spp. and Sulfolobus metallicus. Res Microbiol, 2016, 167: 604-612.

[20]

Carrasco Anita (2015) Jobs and kindness: W.E. Rudolph's role in the shaping of perceptions of mining company-indigenous community relations in the Atacama Desert, Chile. Extr Ind Soc 2(2):352–359. https://doi.org/10.1016/j.exis.2014.11.008

[21]

Chagnes A, Pospiech B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J Chem Technol Biotechnol, 2013, 88(7): 1191-1199.

[22]

Chen GL. Effect of Nickel Ions on the Biological Oxidation Process of Sulfobacillus thermosulfidooxidan, 2022, Shanghai: East China University of Science and Technology in Chinese

[23]

Chen H, Giri NC, Zhang RH, Yamane K, Zhang Y, Maroney M, Costa M. Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem, 2010, 285(10): 7374-7383.

[24]

Chen X, Ma H, Luo C, Zhou T. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J Hazard Mater, 2017, 326: 77-86.

[25]

Chen M, Ma X, Chen B, Arsenault R, Karlson P, Simon N, Wang Y. Recycling end-of-life electric vehicle lithium-ion batteries. Joule, 2019, 3(11): 2622-2646.

[26]

Chen GL, Shi HJ, Ding HL, Zhang X, Gu TY, Zhu ML, Tan WS. Multi-scale analysis of nickel ion tolerance mechanism for thermophilic Sulfobacillus thermosulfidooxidans in bioleaching. J Hazard Mater, 2022, 443: 130245.

[27]

Christel S, Herold M, Bellenberg S, El Hajjami M, Buetti-Dinh A, Pivkin IV, Sand W, Wilmes P, Poetsch A, Dopson M. Multi-omics reveals the lifestyle of the acidophilic, mineral-oxidizing model species Leptospirillum ferriphilum. Appl Environ Microbiol, 2018, 84(3): e02091-e2117.

[28]

Cockell CS, Santomartino R, Finster K, Waajen AC, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N. Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat Commun, 2020, 11(1): 5523.

[29]

Crundwell FK. How do bacteria interact with minerals?. Hydrometallurgy, 2003, 71(1–2): 75-81.

[30]

Da Kheirallah M, El-Samad LM, Abdel-Moneim AM. DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). Sci Total Environ, 2021, 753: 141743.

[31]

Dar S, Shuja RN, Shakoori AR. A synthetic cadmium metallothionein gene (PMCd1syn) of Paramecium species: expression, purification and characteristics of metallothionein protein. Mol Biol Rep, 2013, 40(2): 983-997.

[32]

Deng S, Gu GH. An electrochemical impedance spectroscopy study of arsenopyrite oxidation in the presence of Sulfobacillus thermosulfidooxidans. Electrochim Acta, 2018, 287: 106-114.

[33]

Deng S, Gu G, Wu Z, Xu X. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms. Chemosphere, 2017, 185: 403-411.

[34]

Dey S, Paul AK. Influence of metal ions on biofilm formation by Arthrobacter sp. SUK 1205 and evaluation of their Cr(VI) removal efficacy. Int Biodeterior Biodegradation, 2018, 132: 122-131.

[35]

Di Meglio L, Busalmen JP, Pastore JI, Ballarin VL, Nercessian D. Hyperhalophilic archaeal biofilms: growth kinetics, structure, and antagonistic interaction in continuous culture. Biofouling, 2014, 30: 237-245.

[36]

Dimkpa CO, Merten D, Svatoš A, Buchel G, Kothe E. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol, 2009, 107(5): 1687-1696.

[37]

Dong YQ, Jiang BT, Xu DK, Jiang CY, Li Q, Gu TY. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry, 2018, 123: 34-44.

[38]

Dopson M, Baker-Austin C, Koppineedi PR, Bond PL. Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology, 2003, 149(8): 1959-1970.

[39]

Diaz M, Castro M, Copaja S et al (2018) Biofilm Formation by the Acidophile Bacterium Acidithiobacillusthiooxidans Involves c-di-GMP Pathway and Pel exopolysaccharide. Genes, 9(2):113. https://doi.org/10.3390/genes9020113

[40]

Fan YJ, Yang HY, Zi JC. The influence of the ions in solution on the growth of bioleaching engineering bacteria. Non-Ferrous Mining Metal, 2004, 20(2): 17-19. in Chinese

[41]

Faramarzi MA, Stagars M, Pensini E, Krebs W, Brandl H. Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol, 2004, 113(1–3): 321-326.

[42]

Feng SS, Hou SX, Cui YQ, Tong YJ, Yang HL. Metabolic transcriptional analysis on copper tolerance in moderate thermophilic bioleaching microorganism Acidithiobacillus caldus. J Ind Microbiol Biotechnol, 2020, 47(1): 21-33.

[43]

Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol, 2010, 8(9): 623-633.

[44]

Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the "house of biofilm cells". J Bacteriol, 2007, 189(22): 7945-7947.

[45]

Fulaz S, Vitale S, Quinn L, Casey E (2019) Nanoparticle–Biofilm Interactions: The Role of the EPS Matrix. Trends Microbiol. 27(11): 915–926. https://doi.org/10.1016/j.tim.2019.07.004

[46]

Gao XY, Liu XJ, Fu CA, Gu XF, Lin JQ, Liu XM, Pang X, Lin JQ, Chen LX. Novel Strategy for Improvement of the bioleaching efficiency of Acidithiobacillus ferrooxidans based on the AfeI/R quorum sensing system. MDPI, 2020, 10(3): 222.

[47]

Gomes HI, Funari V, Mayes WM, Rogerson M, Prior TJ. Recovery of Al, Cr and V from steel slag by bioleaching: batch and column experiments. J Environ Manage, 2018, 222: 30-36.

[48]

González A, Bellenberg S, Mamani S, . AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans. Appl Microbiol Biotechnol, 2013, 97: 3729-3737.

[49]

Govender Y, Gericke M. Extracellular polymeric substances (EPS) from bioleaching systems and its application in bioflotation. Miner Eng, 2011, 24(11): 1122-1127.

[50]

Gracioso LH, Peña-Bahamonde J, Karolski B, Borrego BB, Perpetuo EA, . Copper mining bacteria: Converting toxic copper ions into a stable single-atom copper. Sci Adv, 2021

[51]

Gratz E, Sa QN, Apelian D, Wang Y. A closed loop process for recycling spent lithium ion batteries. J Power Sources, 2014, 262: 255-262.

[52]

Gu G-H, Hu K-T, Li S-K. Bioleaching and electrochemical properties of chalcopyrite by pure and mixed culture of Leptospirillum ferriphilum and Acidthiobacillus thiooxidans. Journal of Central South University, 2013, 20: 178-183.

[53]

Gu G-H, Yang H-S, Hu K-T, Wang C-Q, Xiong X-X, Li S-K. Formation of passivation film during pyrrhotite bioleached by pure L. ferriphilum and mixed culture of L. ferriphilum and A. caldus. J Central South Univ, 2015, 22: 880-886.

[54]

Gu TY, Rastegar SO, Mousavic SM, Li M, Zhou MH. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Biores Technol, 2018, 261: 428-440.

[55]

Gu TY, Wang D, Lekbach Y, Xu DK. Extracellular electron transfer in microbial biocorrosion. Curr Opin Electrochem, 2021, 29: 100763.

[56]

Gumulya Y, Boxal NJ, Khaleque HN, Santala V, Carlson RP, Kaksonen AH. In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes, 2018, 9(2): 116.

[57]

Halleux V. New EU (2021) regulatory Accessed 22 Feb 2023. framework for batteries-Setting sustainability requirements. p 689337. https://www.europarl.europa.eu/thinktank/en/document.html. Accessed 22 Feb 2023.

[58]

Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol, 2004, 2(2): 95-108.

[59]

Hansford GS, Vargas T. Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy, 2001, 59(2–3): 135-145.

[60]

Haragobinda S, Ranjan KM, Pankaj KP, Snehasish M. Bioleaching approach for extraction of metal values from secondary solid wastes: a critical review. Hydrometalllurgy, 2019, 189: 105122.

[61]

Hartono M, Astrayudha MA, Petrus HTBM, Wiratni SH. Lithium recovery of spent lithium-ion battery using bioleaching from local sources microorganism. Rasayan J Chem, 2017, 10(3): 897-903.

[62]

Hendrickson TP, Kavvada O, Shah N, Sathre R, Scown CD. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California. Environ Res Lett, 2015, 10(1): 14011.

[63]

Heydarian A, Mousavi SM, Vakilchap F, Baniasadi M. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J Power Sources, 2018, 378: 19-30.

[64]

Horeh NB, Mousavi SM, Shojaosadati SA. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J Power Sources, 2016, 320: 257-266.

[65]

Horn H, Neu TR, Wulkow M. Modelling the structure and function of extracellular polymeric substances in biofilms with new numerical techniques. Water Sci Technol, 2001, 43(6): 121-127.

[66]

Hosseinzadeh F, Rastegar SO, Ashengroph M. Bioleaching of rare earth elements from spent automobile catalyst as pretreatment method to improve Pt and Pd recovery: process optimization and kinetic study. Process Biochem, 2021, 105: 1-7.

[67]

Hu X, Wu C, Shi H, Xu W, Hu B, Lou L. Potential threat of antibiotics resistance genes in bioleaching of heavy metals from sediment. Sci Total Environ, 2022, 814: 152750.

[68]

Huang Y, Li M, Yang Y, Zeng Q, Loganathan P, Hu L, Zhong H, He Z. Sulfobacillus thermosulfidooxidans: an acidophile isolated from acid hot spring for the biosorption of heavy metal ions. Int J Environ Sci Technol, 2020, 17(5): 2655-2666.

[69]

Inaba Y, West AC, Banta S. Glutathione synthetase overexpression in Acidithiobacillus ferrooxidans improves halotolerance of iron oxidation. Appl Environ Microbiol, 2021, 87(20): 1-9.

[70]

Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol, 2018, 200: e00580-e617.

[71]

Jasu A, Rani R. Biofilm mediated strategies to mitigate heavy metal pollution: A critical review in metal bioremediation. Biocatal Agric Biotechnol, 2021, 37: 102183.

[72]

Javiera RZ, Gallardo S, Martínez-Bussenius C, Norambuena R, Navarro CA, Paradela A, Jerez CA. Response of the biomining Acidithiobacillus ferrooxidans to high cadmium concentrations. J Proteomics, 2019, 198: 132-144.

[73]

Jegan Roy J, Srinivasan M, Cao B. Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries as a high pulp density. ACS Sustain Chem Eng, 2021, 9: 3060-3069.

[74]

Jeremic S, Beškoski VP, Djokic L, Vasiljevic B, Vrvic MM, Avdalovic J, Cvijovic GG, Beskoski LS, Nikodinovic-Runic J (2016) Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments. J. Environ. Manage. 172: 151–161. https://doi.org/10.1016/j.jenvman.2016.02.041

[75]

Jha MK, Kumari A, Jha AK, Kumar V, Hait J, Pandey BD. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manag, 2013, 33(9): 1890-1897.

[76]

Jia R, Yang DQ, Xu DK, Gu TY. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2017, 118: 38-46.

[77]

Jia R, Yang D, Xu J, Xu D, Gu TY. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corros Sci, 2017, 127: 1-9.

[78]

Johnson DB. Development and application of biotechnologies in the metal mining industry. Environ Sci Pollut Res, 2013, 20(11): 7768-7776.

[79]

Joho M, Inouhe M, Tohoyama H. Nickel resistance mechanisms in yeasts and other fungi. J Ind Microbiol, 1995, 14(2): 164-168.

[80]

Jones GC, Van Hille RP, Harrison STL. Reactive oxygen species generated in the presence of fine pyrite particles and its implication in thermophilic mineral bioleaching. Appl Microbiol Biotechnol, 2013, 97(6): 2735-2742.

[81]

Joshi VS, Sheet PS, Cullin N, Kreth J, Koley D. Real-time metabolic interactions between two bacterial species using a carbon-based ph microsensor as a scanning electrochemical microscopy probe. Anal Chem, 2017, 89(20): 11044-11052.

[82]

Jung H, Inaba Y, Jiang V, West AC, Banta S (2022) Engineering polyhistidine tags on surface proteins of Acidithiobacillus ferrooxidans: impact of localization on the binding and recovery of divalent metal cations. ACS Appl. Mater. Interfaces 14(8): 10125–10133. https://doi.org/10.1021/acsami.1c23682

[83]

Jung HJ, Inab Y, Banta S. Genetic engineering of the acidophilic chemolithoautotroph Acidithiobacillus ferrooxidans. Trends Biotechnol, 2022, 40(6): 677-692.

[84]

Kaksonen AH, Mudunuru BM, Hackl R (2014) The Role of Microorganisms in Gold Processing and Recovery—A Review. Hy-drometallurgy 142: 70-83. https://doi.org/10.1016/j.hydromet.2013.11.008

[85]

Kong Q, Lin CLG. Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci, 2010, 67(11): 1817-1829.

[86]

Kumar V, Mishra RK, Kaur G, Dutta D. Cobalt and nickel impair DNA metabolism by the oxidative stress independent pathway. Metallomics, 2017, 9(11): 1596-1609.

[87]

Lami R, Urios L, Molmeret M, Grimaud R. Quorum sensing in biofilms: a key mechanism to target in ecotoxicological studies. Crit Rev Microbiol, 2022

[88]

Li HX. Studies on the electrochemical performance and technology of sulfide bioleaching (in Chinese), 2001, Changsha: Central South University.

[89]

Li HM, Ke JJ. Effect of Ni2+ and Co2+ on activity of Thiobacillus Ferrooxidans (in Chinese). Nonferrous Metals, 2000, 52(1): 49-51.

[90]

Li Q, Sand W (2017) Mechanical and chemical studies on EPS from Sulfobacillus thermosulfidooxidans: from planktonic to biofilm cells. Colloids Surf. B: Biointerfaces 153: 34–40. https://doi.org/10.1016/j.colsurfb.2017.02.009

[91]

Li Q, Becker T, Zhang R, (2019) Investigation on adhesion of Sulfobacillus thermosulfidooxidans via atomic force microscopy equipped with mineral probes. Colloids Surf B: Biointerfaces 173: 639–646. https://doi.org/10.1016/j.colsurfb.2018.10.046

[92]

Liao XJ, Ye MY, Liang JL, Guan Z, Li SP, Deng YH, Gan QW, Liu ZH, Fang XD, Sun SY. Feasibility of reduced iron species for promoting Li and Co recovery from spent LiCoO2 batteries using a mixed-culture bioleaching process. Sci Total Environ, 2022, 830: 154577.

[93]

Liu H. Biofilm characteristics of the bioleaching process of lithium cobalt oxide under metal ion stress, 2020, Shanghai: East China Univeristy of Science and Technology.

[94]

Liu R, Wolfe AL, Dzombak DA, Horwitz CP, Stewart BW, Capo RC. Electrochemical study of hydrothermal and sedimentary pyrite dissolution. Appl Geochem, 2008, 23(9): 2724-2734.

[95]

Liu Y, Dang Z, Lu GN, Wu PX, Feng CH, Yi XY. Utilization of electrochemical impedance spectroscopy for monitoring pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans. Miner Eng, 2011, 24(8): 833-888.

[96]

Liu H, Liu DH, Cheng GQ, Zhang X, Zhu ML, Tan WS. Effects of metal ion stress on bioleaching processes of lithium cobalt oxide (in Chinese). J Chem Eng Chin Univ, 2020, 34(4): 954-962.

[97]

Liu XC, Liu H, Wu WJ, Zhang X, Gu TY, Zhu ML, Tan WS. Oxidative stress induced by metal ions in bioleaching of LiCoO2 by an acidophilic microbial consortium. Front Microbiol, 2020, 10: 3058.

[98]

Liu DH, Shi HJ, Chen GL, Zhang X, Gu TY, Zhu ML, Tan WS. Strategies for anti-oxidative stress and anti-acid stress in bioleaching of LiCoO2 using an acidophilic microbial consortium. Extrephlie, 2022, 28(2): 22.

[99]

Luo A, Wang F, Sun D, Liu X, Xin B. Formation, development, and cross-species interactions in biofilms. Front Microbiol, 2021, 12: 757327.

[100]

Lv H, Huang HJ, Huang C, Gao Q, Yang ZH, Zhang WX. Electric field driven de-lithiation: a strategy towards comprehensive and efficient recycling of electrode materials from spent lithium ion batteries. Appl Catal B Environ, 2021, 283: 119634.

[101]

Ma L, Wang H, Wu J, Wang Y, Zhang D, Liu X. Metatranscriptomics reveals microbial adaptation and resistance to extreme environment coupling with bioleaching performance. Biores Technol, 2019, 280: 9-17.

[102]

Marcináková R, Kaduková J, Mraíková A, Velgosová O, Ubaldini S. Metal bioleaching from spent lithium-ion batteries using acidophilic bacterial strains. Inzynieria Mineralna, 2016, 17(1): 117-120.

[103]

Martinez P, Vera M, Bobadilla-Fazzini RA. Omics on bioleaching: current and future impacts. Appl Microbiol Biotechnol, 2015, 99(20): 8337-8350.

[104]

Mathivanan K, Chandirika JU, Vinothkanna A, Yin HQ, Liu XD, Meng DL. Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment-a review. Ecotoxicol Environ Saf, 2021, 226: 112863.

[105]

Meshram P, Pandey BD, Mankhand TR. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chem Eng J, 2015, 281: 418-427.

[106]

Mishra D, Kim DJ, Ahn JG, Rhee YH. Bioleaching: a microbial process of metal recovery a review. Met Mater Int, 2005, 11(3): 249-256.

[107]

Mishra D, Kim DJ, Ralph DE, Ahn JG, Rhee YH. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag, 2008, 28: 333-338.

[108]

Moosakazemi F, Ghassa S, Jafari M, Chelgani SC. Bioleaching for recovery of metals from spent batteries—a review. Miner Process Extr Metal Rev, 2022

[109]

Muranishi K, Ishimori K, Uchida T. Regulation of the expression of the nickel uptake system in Vibrio cholerae by iron and heme via ferric uptake regulator (Fur). J Inorg Biochem, 2022, 228: 111713.

[110]

Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation and competition in biofilms(Review). Nat. Rev. Microbiol. 14(9): 589–600. https://doi.org/10.1038/nrmicro.2016.84

[111]

Nanda M, Kumar V, Sharma D. Multimetal tolerance mechanisms in bacteria: the resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat Toxicol, 2019, 212: 1-10.

[112]

Naseri T, Mousavi SM. Insights into the polysaccharides and proteins production from Penicillium citrinum during bioleaching of spent coin cells. Int J Biol Micromol, 2022, 209: 1133-1143.

[113]

Naseri T, Bahaloo-Horeh N, Mousavi SM. Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans. J Environ Manag, 2019, 235: 357-367.

[114]

Naseri T, Bahaloo-Horeh N, Mousavi SM. Bacterial leaching as a green approach for typical metals recovery from end-of-life coin cells batteries. J Clean Prod, 2019, 220: 483-492.

[115]

Natarajan KA. Bioleaching of sulphides under applied potentials. Hydrometallurgy, 1992, 29(1): 161-172.

[116]

Navarro C, Wu LF, Mandrand-Berthelot MA. The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol, 1993, 9(6): 1181-1191.

[117]

Niu ZR, Zou YK, Xin BP, Chen S, Liu CH, Li YP. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Chemosphere, 2014, 109: 92-98.

[118]

Nookongbut P, Kantachote D, Krishnan K, Megharaj M (2017) Arsenic resistance genes of As-resistant purple nonsulfur bacteria isolated from As-contaminated sites for bioremediation application. J. basic microbiol. 57(4): 316–324. https://doi.org/10.1002/jobm.201600584

[119]

Noël N, Florian B, Sand W. AFM & EFM study on attachment of acidophilic leaching organisms. Hydrometallurgy, 2010, 104(3–4): 370-375.

[120]

Nookongbut P, Kantachote D, Krishnan K, Megharaj M. Arsenic resistance genes of As-resistant purple nonsulfur bacteria isolated from As-contaminated sites for bioremediation application. J Basic Microbiol, 2017, 57(4): 316-324.

[121]

Norris PR, Burton NP, Foulis NAM. Acidophiles in bioreactor mineral processing. Extremophiles, 2000, 4(2): 71-76.

[122]

Orell A, Navarro CA, Arancibia R, Mobarec J, Jerez C. Life in blue: copper resistance mechanisms of bacteria and Archaea used in industrial biomining of minerals. Biotechnol Adv, 2010, 28(6): 839-848.

[123]

Ozairy R, Rastega S, Beigzadeh R, Gu T. Optimization of metal bio-acid leaching from mobile phone printed circuit boards using natural organic acids and H2O2. J Mater Cycles Waste Manage, 2021, 24(1): 179-188.

[124]

Pagnanelli F, Moscardini E, Altimari P, Abo Atia T, Toro L. Cobalt products from real waste fractions of end of life lithium ion batteries. Waste Manag, 2016, 51: 214-221.

[125]

Palencia I, Wan RY, Miller JD. The electrochemical behavior of a semiconducting natural pyrite in the presence of bacteria. Metall and Mater Trans B, 1991, 22(6): 765-774.

[126]

Pathak A, Morrison L, Healy MG. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: a critical review. Bioresour Technol, 2017, 229: 211-221.

[127]

Petersen J. Heap leaching as a key technology for recovery of values from low grade ores—a brief overview. Hydrometallurgy, 2016, 165: 206-212.

[128]

Pinna EG, Ruiz MC, Ojeda MW, Rodriguez MH. Cathodes of spent Li-ion batteries: dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy, 2017, 167: 66-71.

[129]

Poma N, Vivaldi F, Bonini A, Salvo P, Kirchhain A, Ates Z, Melai B, Bottai D, Tavanti A, Di Francesco F. Microbial biofilm monitoring by electrochemical transduction methods. TrAC Trends Anal Chem, 2021, 134: 1-15.

[130]

Prangishvili D, Holz I, Stieger E, Nickell S, Kristjansson JK, Zillig W. Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J Bacteriol, 2000, 182: 2985-2988.

[131]

Quatrini R, Johnson DB. Acidithiobacillus ferrooxidans. Trends Microbiol, 2019, 27(3): 282-283.

[132]

Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans. BMC Genomics, 2009, 10: 394.

[133]

Rasoulnia P, Mousavi SM. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments. Biores Technol, 2016, 216: 729-736.

[134]

Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012, 24(5): 981-990.

[135]

Reuter MA, Kojo IV. Challenges of Metal Recycling. Materia, 2012, 2: 50-57.

[136]

Römling U (2008) Great Times for Small Molecules: c-di-AMP, a Second Messenger Candidate in Bacteria and Archaea. Science Signaling 1(33): pe39. https://doi.org/10.1126/scisignal.133pe39

[137]

Ross P, Aloni Y, Weinhouse C, Michaeli D, Weinberger-Ohana P, Meyer R, Benziman M. An unusual guanyl oligonucleotide regulates cellulose synthesis in Acetobacter xylinum. FEBS Lett, 1985, 186(2): 191-196.

[138]

Roy JJ, Cao B, Madhavi S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere, 2021, 282: 130944.

[139]

Roy JJ, Madhavi S, Cao B. Metal extraction from spent lithium-ion batteries (LIBs) at high pulp density by environmentally friendly bioleaching process. J Clean Prod, 2021, 280: 124242.

[140]

Ruiz LM, Valenzuela S, Castro M, Gonzalez A, Fezza M, Soulere L, Rohwerder T, Queneau Y, Doutheau A, Sand W. AHL communication is a widespread phenomenon in biomining bacteria and seems to be involved in mineral-adhesion efficiency. Hydrometallurgy, 2008, 94(1–4): 133-137.

[141]

Saavedra A, García-Meza JV, Cortón E, Gonzalez I. Attachment of Leptospirillum sp. to chemically modified pyrite surfaces. Fast and simple electrochemical monitoring of bacterial mineral interactions. Hydrometallurgy, 2021, 199: 1-11.

[142]

Santegoeds CM, Ferdelman TG, Muyzer G, de Beer D. Structural and functional dynamics of sulfate-reducing populations in bacterial Biofilms. Appl Environ Microbiol, 1998, 64(10): 3731-3739.

[143]

Sanhueza A, Ferrer IJ, Vargas T, Amils R, Sanchez C (1999) Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties. Hydrometallurgy 51(1): 115–129. https://doi.org/10.1016/S0304-386X(98)00079-6

[144]

Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Biomining WS. Schippers A, Glombitza F, Sand W. Metal recovery from ores with microorganisms. Geobiotechnology I. Advances in biochemical engineering/biotechnology 141, 2013, Heidelberg: Springer, Berlin, 10.1007/10_2013_216.

[145]

Schuhmacher JS, Thormann KM, Bange G. How bacteria maintain location and number of flagella?. FEMS Microbiol Rev, 2015, 39(6): 812-822.

[146]

Selkov E, Overbeek R, Kogan Y, Chu L, Vonstein V, Holmes D, Silver S, Haselkorn R, Fonstein M. Functional analysis of gapped microbial genomes: Amino acid metabolism of Thiobacillus ferrooxidans. Proc Natl Acad Sci U S A, 2000, 97(7): 3509-3014.

[147]

Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances 28(6): 882–894. https://doi.org/10.1016/j.biotechadv.2010.08.001

[148]

Song J, Lin J, Ren Y, Lin J. Competitive adsorption of binary mixture of Leptospirillum ferriphilum and Acidithiobacillus caldus onto pyrite. Biotechnol Bioprocess Eng, 2011, 15: 923-930.

[149]

Srichandan H, Mohapatra RK, Singh PK, Mishra S, Parhi PK, Naik K. Column bioleaching applications, process development, mechanism, parametric effect and modelling: a review. J Ind Eng Chem, 2020, 90: 1-16.

[150]

Stadtman ER. Protein oxidation and aging. Free Radical Res, 2006, 40(12): 1250-1258.

[151]

Takenaka S, Iwaku M, Hoshino E (2001) Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis. J. Infect. Chemother. 7(2): 87–93. https://doi.org/10.1007/s101560100014

[152]

Tang DP, Duan JG, Gao QY, Zhao Y, Li Y, Chen P, Zhou JP, Wu ZR, Xu RX, Li HY. Strand-specific RNA-seq analysis of the Acidithiobacillus ferrooxidans transcriptome in response to magnesium stress. Arch Microbiol, 2018, 200: 1025-1035.

[153]

Vera M, Guiliani N, Jerez CA. Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans. Hydrometallurgy, 2003, 71(1): 125-132.

[154]

Verma A, Kore R, Corbin DR, Shiflett MB. Metal recovery using oxalate chemistry: a technical review. Ind Eng Chem Res, 2019, 58: 15381-15393.

[155]

Vroom JM, De Grauw KJ, Gerritsen HC, Bradshaw DJ, Marsh PD, Watson GK, Birmingham JJ, Allison C. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl Environ Microbiol, 1999, 65: 3502-3511.

[156]

Wang JP, Li GY, Yin HL, An TC. Bacterial response mechanism during biofilm growth on different metal material substrates: EPS characteristics, oxidative stress and molecular regulatory network analysis. Environ Res, 2020, 185: 1-10.

[157]

Wang LM, Yin SH, Wu AX, Chen W. Synergetic bioleaching of copper sulfides using mixed microorganisms and its community structure succession. J Clean Prod, 2020, 245: 118689.

[158]

Wang D, Kijkla P, Saleh MA, Kumseranee S, Punpruk S, Gu TY. Tafel scan schemes for microbiologically influenced corrosion of carbon steel and stainless steel. J Mater Sci Technol, 2022, 130: 193-197.

[159]

Wang D, Yang CT, . Conductive magnetite nanoparticles, considerable accelerated carbon steel corrosion by electroactive Desulfovibrio vulgaris biofilm. Corros Sci, 2022, 205: 110440.

[160]

Wang J, Cui YC, Chu HC, Tian BY, Li HM, Zhang MS, Bin BP. Enhanced metal bioleaching mechanisms of extracellular polymeric substance for obsolete LiNixCoyMn1-x-yO2 at high pulp density. J Environ Manag, 2022, 318: 115429.

[161]

Wenbin N, Dejuan Z, Feifan L, Lei Y, Peng C, Xiaoxuan Y, Hongyu L. Quorum-sensing system in Acidithiobacillus ferrooxidans involved in its resistance to Cu2+. Lett Appl Microbiol, 2011, 53(1): 84-91.

[162]

Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482: 331-338.

[163]

Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. Genetic control of bacterial biofilms. J Appl Genet, 2016, 57(2): 225-238.

[164]

Wu WJ. Slurry concentration limitation in bioleaching of valuable metals from electronic waste. Shanghai East China Univ Sci Technol, 2020 in Chinese

[165]

Wu XL, Zhang YJ, Liu DG, Duan H, Fan HW, Liu XD. Clone and differential expression of metal transport genes in Acidithiobacillus ferrooxidans. Chin J Nonferrous Metals, 2013, 23(2): 577-584.

[166]

Wu WJ, Liu XC, Zhang X, Zhu ML, Tan WS. Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron–sulfur-oxidizing bacteria. Bioresour Bioprocess, 2018, 5(1): 10.

[167]

Wu WJ, Li XY, Zhang X, Gu TY, Qiu YQ, Zhu ML, Tan WS. Characteristics of oxidative stress and antioxidant defenses by a mixed culture of acidophilic bacteria in response to Co2+ exposure. Extremophiles, 2020, 24(4): 485-499.

[168]

Xiao LL, Zan GH, Feng XM, Bao Y, Huang SF, Luo XY, Xu X, Zhang ZY, Yang XB. The associations of multiple metals mixture with accelerated DNA methylation aging. Environ Pollut, 2021, 269: 1-10.

[169]

Xin BP, Zhang D, Zhang X, Xia YT, Wu F, Chen S, Li L. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour Technol, 2009, 100: 6163-6169.

[170]

Xin YY, Guo XM, Chen S, Wang J, Wu F, Xin BP. Bioleaching of valuable metals Li Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J Clean Prod, 2016, 116: 249-258.

[171]

Xu J, Thomas HR, Francis RW, Lum KR, Wang JW, Liang B. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources, 2008, 177: 512-527.

[172]

Xu Y, Yin HQ, Jiang HD, Liang YL, Guo X, Ma LY, Xiao HH, Liu XD. Comparative study of nickel resistance of pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum. Arch Microbiol, 2013, 195(9): 637-646.

[173]

Xu P, Zeng GM, Huang DL, Liu L, Zhao MH, Lai C, Li NJ, Wei Z, Huang C, Zhang C. Metal bioaccumulation, oxidative stress and antioxidant defenses in Phanerochaete chrysosporium response to Cd exposure. Ecol Eng, 2016, 87: 150-156.

[174]

Xu HY, Xie ZL, Jiang HC, Guo J, Meng Q, Zhao Y, Wang XF. Transcriptome analysis and expression profiling of molecular responses to Cd toxicity in Morchella spongiola. Mycobiology, 2021, 49(4): 421-433.

[175]

Yamada S, Suzuki Y, Kouuma A, Watanabe K. Development of a CRISPR interference system for selective gene knockdown in Acidithiobacillus ferrooxidans. J Biosci Bioeng, 2022, 133(2): 105-109.

[176]

Yan CC, Wang F, Geng HH, Liu HJ, Pu SY, Tian ZJ, Chen HL, Zhou BH, Yuan RF, Yao J. Integrating high-throughput sequencing and metagenome analysis to reveal the characteristic and resistance mechanism of microbial community in metal contaminated sediments. Sci Total Environ, 2020, 707: 136116.

[177]

Yang XL, Zhang JW, Fang XH. Rare earth element recycling from waste nickel-metal hydride batteries. J Hazard Mater, 2014, 279: 384-388.

[178]

Yang Y, Xu SM, He YH. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manag, 2017, 64: 219-227.

[179]

Yuan P. Study on the leaching of chalcopyrite and the differential expression of gene Afe0022 by different resistance acidophilic Thiobacillus ferrooxidans. Central South Univ, 2010 In Chinese

[180]

Zeng GS, Deng XR, Luo SL, Luo XB, Zou JP. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J Hazard Mater, 2012, 199: 164-169.

[181]

Zeng GS, Luo SL, Deng XR, . Influence of silver ions on bioleaching of cobalt from spent lithium batteries. Miner Eng, 2013, 49: 40-44.

[182]

Zeng XL, Li JH, Singh N. Recycling of spent lithium-ion battery: a critical review. Crit Rev Environ Sci Technol, 2014, 44: 1129-1165.

[183]

Zhang RY, Liu J, Neu TR, Li Q, Bellenberg S, Sand W, Vera M. Interspecies interactions of metal-oxidizing thermo-acidophilic Archaea Acidianus and Sulfolobus. Adv Mater Res, 2015, 1130: 105-108.

[184]

Zhang BG, Wang L, Liu YB, Zhang YJ, Zhang LP, Shi ZN. Can metallic lithium be electrochemically extracted from water, the universal solvent?. J Mol Liq, 2021, 342: 117545.

[185]

Zhao L, Zhu NW, Wang XH. Comparison of bio-dissolution of spent Ni–Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate. Chemosphere, 2008, 70(6): 974-981.

[186]

Zhao Y, Chen P, Nan WB, Zhi DJ, Liu RH, Li HY. The use of (5Z)-4-bromo-5-(bromomethylene)- 2(5H)-furanone for controlling acid mine drainage through the inhibition of Acidithiobacillus ferrooxidans biofilm formation. Biores Technol, 2015, 186: 52-57.

[187]

Zhao SQ, He WZ, Li GM. An L. Recycling technology and principle of spent lithium-ion battery. Recycling of Spent Lithium-Ion Batteries, 2019, Cham: Springer.

[188]

Zhao YL, Yuan XZ, Jiang LB, Wen J, Wang H, Guan R, Zhang JJ, Zeng GM. Regeneration and reutilization of cathode materials from spent lithium-ion batteries. Chem Eng J, 2020, 383: 123089.

[189]

Zheng CL, Chen MJ, Tao ZL, Zhang L, Zhang XF, Wang JY, Liu JS. Differential expression of sulfur assimilation pathway genes in Acidithiobacillus ferrooxidans under Cd2+ stress: evidence from transcriptional, enzymatic, and metabolic profiles. Extremophiles, 2015, 19(2): 429-436.

[190]

Zheng XH, Zhu ZW, Lin X, Zhang Y, He Y, Cao HB, Sun Z. A mini-review on metal recycling form spent lithium ion batteries. Engineering, 2018, 4(3): 361-370.

[191]

Zheng XF, Nie ZY, Jiang Q, Yao X, Chen JH, Liu HC, Xia JL. The mechanism by which FeS2 promotes the bioleaching of CuFeS2: an electrochemical and DFT study. Miner Eng, 2021, 173: 1-10.

[192]

Zhou WB, Zhang LJ, Peng J, Ge Y, Tian Z, Sun JX, Cheng HN, Zhou HB. Cleaner utilization of electroplating sludge by bioleaching with a moderately thermophilic consortium: a pilot study. Chemosphere, 2019, 232: 345-355.

[193]

Zhou X, Xue BY, Medina S, Burchiel SW, Liu KJ. Uranium directly interacts with the DNA repair protein poly (ADP-ribose) polymerase 1. Toxicol Appl Pharmacol, 2021, 410: 115360.

[194]

Zhu NW, Zhang LH, Li CJ, Cai CG. Recycling of spent nickel–cadmium batteries based on bioleaching process. Waste Manag, 2003, 23(8): 703-708.

Funding

National Natural Science Foundation of China(No. 21878083)

Open Project Funding of State Key Laboratory of Bioreactor Engineering of China

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/