Large-scale expansion of human umbilical cord-derived mesenchymal stem cells using PLGA@PLL scaffold

Yujie Liu , Obed Boadi Amissah , Xiaoying Huangfang , Ling Wang , Jean de Dieu Habimana , Linshuang Lv , Xuanyan Ding , Junyi Li , Ming Chen , Jinmin Zhu , Omar Mukama , Yirong Sun , Zhiyuan Li , Rongqi Huang

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 18

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 18 DOI: 10.1186/s40643-023-00635-6
Research

Large-scale expansion of human umbilical cord-derived mesenchymal stem cells using PLGA@PLL scaffold

Author information +
History +
PDF

Abstract

Mesenchymal stem cells (MSCs) are highly important in biomedicine and hold great potential in clinical treatment for various diseases. In recent years, the capabilities of MSCs have been under extensive investigation for practical application. Regarding therapy, the efficacy usually depends on the amount of MSCs. Nevertheless, the yield of MSCs is still limited due to the traditional cultural methods. Herein, we proposed a three-dimensional (3D) scaffold prepared using poly lactic-co-glycolic acid (PLGA) nanofiber with polylysine (PLL) grafting, to promote the growth and proliferation of MSCs derived from the human umbilical cord (hUC-MSCs). We found that the inoculated hUC-MSCs adhered efficiently to the PLGA scaffold with good affinity, fast growth rate, and good multipotency. The harvested cells were ideally distributed on the scaffold and we were able to gain a larger yield than the traditional culturing methods under the same condition. Thus, our cell seeding with a 3D scaffold could serve as a promising strategy for cell proliferation in the large-scale production of MSCs. Moreover, the simplicity and low preparation cost allow this 3D scaffold to extend its potential application beyond cell culture.

Keywords

MSCs / Large-scale expansion culture / PLGA@PLL scaffold / Biomedicine

Cite this article

Download citation ▾
Yujie Liu, Obed Boadi Amissah, Xiaoying Huangfang, Ling Wang, Jean de Dieu Habimana, Linshuang Lv, Xuanyan Ding, Junyi Li, Ming Chen, Jinmin Zhu, Omar Mukama, Yirong Sun, Zhiyuan Li, Rongqi Huang. Large-scale expansion of human umbilical cord-derived mesenchymal stem cells using PLGA@PLL scaffold. Bioresources and Bioprocessing, 2023, 10(1): 18 DOI:10.1186/s40643-023-00635-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell, 2011, 9(1): 11-15.

[2]

Go D, Lott P, Stollenwerk J, Thomas H, Möller M, Kuehne AJC. Laser carbonization of PAN-nanofiber mats with enhanced surface area and porosity. ACS Appl Mater Interfaces, 2016, 8: 28412-28417.

[3]

Gong X, Zhang S, Luo W, Guo N, Wang L, Jia D, Zhao Z, Feng S, Jia L. Enabling a large accessible surface area of a pore-designed hydrophilic carbon nanofiber fabric for ultrahigh capacitive deionization. ACS Appl Mater Interfaces, 2020, 12(44): 49586-49595.

[4]

Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed, 2007, 46: 5670-5703.

[5]

Han S, Zhao Y, Xiao Z, Han J, Chen B, Chen L, Dai J. The three-dimensional collagen scaffold improves the stemness of rat bone marrow mesenchymal stem cells. J Genet Genomics, 2012, 39(12): 633-641.

[6]

Huang GTJ, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res, 2009, 88: 792-806.

[7]

Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418: 41-49.

[8]

Kim DS, Lee MW, Ko YJ, Chun YH, Kim HJ, Sung KW, Koo HH, Yoo KH. Cell culture density affects the proliferation activity of human adipose tissue stem cells. Cell Biochem Funct, 2016, 34(1): 16-24.

[9]

Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol, 2021, 14(1): 195.

[10]

Lanzoni G, Linetsky E, Correa D, Messinger Cayetano S, Alvarez RA, Kouroupis D, Alvarez Gil A, Poggioli R, Ruiz P, Marttos AC, Hirani K, Bell CA, Kusack H, Rafkin L, Baidal D, Pastewski A, Gawri K, Leñero C, Mantero AMA, Metalonis SW, Wang X, Roque L, Masters B, Kenyon NS, Ginzburg E, Xu X, Tan J, Caplan AI, Glassberg MK, Alejandro R, Ricordi C. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: a double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med, 2021, 10(5): 660-673. Epub 2021 Jan 5

[11]

Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel?. Adv Mater, 2004, 16: 1151-1170.

[12]

Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 2005, 26: 5158-5166.

[13]

Lin CY, Chang YH, Kao CY, Lu CH, Sung LY, Yen TC, Lin KJ, Hu YC. Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors. Biomaterials, 2012, 33(14): 3682-3692.

[14]

Lin H, Sohn J, Shen H, Langhans MT, Tuan RS. Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing. Biomaterials, 2019, 203: 96-110.

[15]

Liu Q, Zhu J, Zhang L, Qiu Y. Recent advances in energy materials by electrospinning. Renew Sust Energ Rev, 2018, 81: 1825-1858.

[16]

Lu X, Wang C, Wei Y. One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small, 2009, 5: 2349-2370.

[17]

Lu L, Dai C, Zhang Z, Du H, Li S, Ye P, Fu Q, Zhang L, Wu X, Dong Y, Song Y, Zhao D, Pang Y, Bao C. Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res Ther, 2019, 10(1): 143.

[18]

Minardi S, Corradetti B, Taraballi F, Sandri M, Martinez JO, Powell ST, Tampieri A, Weiner BK, Tasciotti E. Biomimetic concealing of PLGA microspheres in a 3D scaffold to prevent macrophage uptake. Small, 2016, 12: 1479-1488.

[19]

Ng EX, Wang M, Neo SH, Tee CA, Chen CH, Van Vliet KJ. Dissolvable gelatin-based microcarriers generated through droplet microfluidics for expansion and culture of mesenchymal stromal cells. Biotechnol J, 2021, 16(3): e2000048.

[20]

Pumberger M, Qazi TH, Ehrentraut MC, Textor M, Kueper J, Stoltenburg-Didinger G, Winkler T, von Roth P, Reinke S, Borselli C, Perka C, Mooney DJ, Duda GN, Geißler S. Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials, 2016, 99: 95-108.

[21]

Reboredo JW, Weigel T, Steinert A, Rackwitz L, Rudert M, Walles H. Investigation of migration and differentiation of human mesenchymal stem cells on five-layered collagenous electrospun scaffold mimicking native cartilage structure. Adv Healthc Mater, 2016, 5(17): 2191-2198.

[22]

Ryu H, Oh JE, Rhee KJ, Baik SK, Kim J, Kang SJ, Sohn JH, Choi E, Shin HC, Kim YM, Kim HS, Bae KS, Eom YW. Adipose tissue-derived mesenchymal stem cells cultured at high density express IFN-β and suppress the growth of MCF-7 human breast cancer cells. Cancer Lett, 2014, 352: 220-227.

[23]

Shu L, Niu C, Li R, Huang T, Wang Y, Huang M, Ji N, Zheng Y, Chen X, Shi L, Wu M, Deng K, Wei J, Wang X, Cao Y, Yan J, Feng G. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther, 2020, 11(1): 361.

[24]

Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 2008, 29: 1989-2006.

[25]

Stojanov S, Berlec A. Electrospun Nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications. Front Bioeng Biotechnol, 2020, 8: 130.

[26]

Weiss ARR, Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol, 2019, 10: 1191.

[27]

Xu T, Zhang Y, Chang P, Gong S, Shao L, Dong L. Mesenchymal stem cell-based therapy for radiation-induced lung injury. Stem Cell Res Ther, 2018, 9(1): 18.

[28]

Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A. The ground state of embryonic stem cell self-renewal. Nature, 2008, 453: 519-523.

[29]

Yu DG, Li JJ, Zhang M, Williams GR. High-quality Janus nanofibers prepared using three-fluid electrospinning. Chem Commun, 2017, 53: 4542-4545.

[30]

Zhao L, He C, Gao Y, Cen L, Cui L, Cao Y. Preparation and cytocompatibility of PLGA scaffolds with controllable fiber morphology and diameter using electrospinning method. J Biomed Mater Res B Appl Biomater, 2008, 87: 26-34.

[31]

Zhao G, Liu F, Lan S, Li P, Wang L, Kou J, Qi X, Fan R, Hao D, Wu C, Bai T, Li Y, Liu JY. Large-scale expansion of Wharton's jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing. Stem Cell Res Ther, 2015, 6: 38.

[32]

Zhou CC, Xiong QC, Zhu XX, Du W, Deng P, Li XB, Jiang YZ, Zou SJ, Wang CY, Yuan Q. AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs. Bone Res, 2017, 5: 17044.

[33]

Zhu R, Yan T, Feng Y, Liu Y, Cao H, Peng G, Yang Y, Xu Z, Liu J, Hou W, Wang X, Li Z, Deng L, Wang S, Li J, Han Q, Li H, Shan G, Cao Y, An X, Yan J, Zhang Z, Li H, Qu X, Zhu J, Zhou S, Wang J, Zhang F, Gao J, Jin R, Xu D, Ma YQ, Huang T, Peng S, Zheng Z, Stambler I, Gilson E, Lim LW, Moskalev A, Cano A, Chakrabarti S, Ulfhake B, Su H, Xu H, Xu S, Wei F, Brown-Borg HM, Min KJ, Ellison-Hughes G, Caruso C, Jin K, Zhao RC. Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Res, 2021, 31(12): 1244-1262. Epub 2021 Oct 26

[34]

Li T, Xia M, Gao Y, Chen Y, Xu Y. Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert opinion on biological therapy. 2015 Sep 2;15(9):1293–306. https://doi.org/10.1517/14712598.2015.1051528

[35]

Ribatti D. A revisited concept: Contact inhibition of growth. From cell biology to malignancy. Experimental cell research. 2017 Oct 1;359(1):17–9. https://doi.org/10.1016/j.yexcr.2017.06.012

[36]

Yin F, Wang WY, Jiang WH. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo: from biological characteristics to therapeutic mechanisms. World journal of stem cells. 2019 Aug 8;11(8):548. https://doi.org/10.4252/wjsc.v11.i8.548

[37]

Xie Q, Liu R, Jiang J, Peng J, Yang C, Zhang W, Wang S, Song J. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment?. Stem cell research & therapy. 2020 Dec;11:1–3.

[38]

Scott DW, Dunn TS, Ballestas ME, Litovsky SH, Patel RP. Identification of a high-mannose ICAM-1 glycoform: effects of ICAM-1 hypoglycosylation on monocyte adhesion and outside in signaling. American Journal of Physiology-Cell Physiology. 2013 Jul 15;305(2):C228–37.

[39]

Furuta K, Guo Q, Pavelko KD, Lee JH, Robertson KD, Nakao Y, Melek J, Shah VH, Hirsova P, Ibrahim SH. Lipid-induced endothelial vascular cell adhesion molecule 1 promotes nonalcoholic steatohepatitis pathogenesis. J. Clin. Investig. 2021 Mar 15;131(6). https://doi.org/10.1172/JCI143690

[40]

Lim WC, Choi HK, Kim KT, Lim TG. Rose (Rosa gallica) petal extract suppress proliferation, migration, and invasion of human lung adenocarcinoma A549 cells through via the EGFR signaling pathway. Molecules. 2020 Nov 4;25(21):5119. https://doi.org/10.3390/molecules25215119

[41]

Dodig S, Čepelak I, Pavić I. Hallmarks of senescence and aging. Biochemia medica. 2019 Oct 15;29(3):483–97.

[42]

Ribatti D. A revisited concept: Contact inhibition of growth. From cell biology to malignancy. Exp. Cell Res. 2017 Oct 1;359(1):17–9.

[43]

Huang R, Li S, Tian C, Zhou P, Zhao H, Xie W, Xiao J, Wang L, Habimana JD, Lin Z, Yang Y. Thermal stress involved in TRPV2 promotes tumorigenesis through the pathways of HSP70/27 and PI3K/Akt/mTOR in esophageal squamous cell carcinoma. British Journal of Cancer. 2022 Nov 127(8):1424–39. https://doi.org/10.1038/s41416-022-01896-2

[44]

Culenova M, Bakos D, Ziaran S, Bodnarova S, Varga I, Danisovic L (2019) Bioengineered scaffolds as substitutes for grafts for urethra reconstruction. Materials, 12(20);3449. https://doi.org/10.3390/ma12203449

[45]

Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y (2022) Electrospun nanofibers for bone regeneration: from biomimetic composition, structure to function. Journal of Materials Chemistry B. 10(32) 6078–106. https://doi.org/10.1039/D2TB01182D

[46]

Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. European Journal of Pharmacology. 2021 Dec 3:174657. https://doi.org/10.1016/j.ejphar.2021.174657

[47]

Ortega-Oller I, Padial-Molina M, Galindo-Moreno P, O’Valle F, Jódar-Reyes AB, Peula-García JM (2015) Bone regeneration from PLGA micro-nanoparticles. Biomed Res. Int. Oct 5. 20151–18. https://doi.org/10.1155/2015/415289

[48]

Lanao RP, Jonker AM, Wolke JG, Jansen JA, van Hest JC, Leeuwenburgh SC (2013). Physicochemical properties and applications of poly (lactic-co-glycolic acid) for use in bone regeneration. Tissue Engineering Part B: Reviews. Aug 1;19(4):380-90. https://doi.org/10.1089/ten.teb.2012.0443

Funding

The Stem Cell New Drug, Innovation Hunan Team(2019RS1088)

Hunan Province Key R&D Plan(2020SK2137)

Natural Science Foundation of Guangdong Province(2021A1515010526)

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/