Construction of the genetic switches in response to mannitol based on artificial MtlR box

Fengxu Xiao , Yupeng Zhang , Liang Zhang , Zhongyang Ding , Guiyang Shi , Youran Li

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 9

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 9 DOI: 10.1186/s40643-023-00634-7
Research

Construction of the genetic switches in response to mannitol based on artificial MtlR box

Author information +
History +
PDF

Abstract

Synthetic biology has rapidly advanced from the setup of native genetic devices to the design of artificial elements able to provide organisms with highly controllable functions. In particular, genetic switches are crucial for deploying new layers of regulation into the engineered organisms. While the assembly and mutagenesis of native elements have been extensively studied, limited progress has been made in rational design of genetic switches due to a lack of understanding of the molecular mechanism by which a specific transcription factor interacts with its target gene. Here, a reliable workflow is presented for designing two categories of genetic elements, one is the switch element-MtlR box and the other is the transcriptional regulatory element- catabolite control protein A (CcpA) box. The MtlR box was designed for ON/OFF-state selection and is controlled by mannitol. The rational design of MtlR box-based molecular structures can flexibly tuned the selection of both ON and OFF states with different output switchability in response to varied kind effectors. Different types of CcpA boxes made the switches with more markedly inducer sensitivities. Ultimately, the OFF-state value was reduced by 90.69%, and the maximum change range in the presence of two boxes was 15.31-fold. This study presents a specific design of the switch, in a plug-and-play manner, which has great potential for controlling the flow of the metabolic pathway in synthetic biology.

Keywords

Genetic switch / MtlR box / Cre site / Bacillus licheniformis

Cite this article

Download citation ▾
Fengxu Xiao, Yupeng Zhang, Liang Zhang, Zhongyang Ding, Guiyang Shi, Youran Li. Construction of the genetic switches in response to mannitol based on artificial MtlR box. Bioresources and Bioprocessing, 2023, 10(1): 9 DOI:10.1186/s40643-023-00634-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barbier I, Perez-Carrasco R, Schaerli Y. Controlling spatiotemporal pattern formation in a concentration gradient with a synthetic toggle switch. Mol Syst Biol, 2020, 16: e9361.

[2]

Belitsky BR, Sonenshein AL. Roadblock repression of transcription by Bacillus subtilis CodY. J Mol Biol, 2011, 411: 729-743.

[3]

Boehm CR, Grant PK, Haseloff J. Programmed hierarchical patterning of bacterial populations. Nat Commun, 2018, 9: 776.

[4]

Bouraoui H, Ventroux M, Noirot-Gros MF, Deutscher J, Joyet P. Membrane sequestration by the EIIB domain of the mannitol permease MtlA activates the Bacillus subtilis mtl operon regulator MtlR. Mol Microbiol, 2013, 87: 789-801.

[5]

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339: 819-823.

[6]

Du P, Lou C, Zhao X, Wang Q, Ji X, Wei W. CRISPR-based genetic switches and other complex circuits: research and application. Life (basel), 2021

[7]

Eggeling R. Disentangling transcription factor binding site complexity. Nucleic Acids Res, 2018, 46: e121.

[8]

Gaber R, Lebar T, Majerle A, Ster B, Dobnikar A, Bencina M, Jerala R. Designable DNA-binding domains enable construction of logic circuits in mammalian cells. Nat Chem Biol, 2014, 10: 203-208.

[9]

Garg A, Lohmueller JJ, Silver PA, Armel TZ. Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res, 2012, 40: 7584-7595.

[10]

Henstra SA, Tuinhof M, Duurkens RH, Robillard GT. The Bacillus stearothermophilus mannitol regulator, MtlR, of the phosphotransferase system, a DNA-binding protein, regulated by HPr and iicbmtl-dependent phosphorylation. J Biol Chem, 1999, 274: 4754-4763.

[11]

Huang H, Shao X, Xie Y, Wang T, Zhang Y, Wang X, Deng X. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat Commun, 2019, 10: 2931.

[12]

Huo Y, Zhan Y, Wang Q, Li S, Yang S, Nomura CT, Wang C, Chen S. Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02: enzymatic properties and efficient functions for acetoin/butanediol and L-valine biosynthesis. Bioprocess Biosyst Eng, 2018, 41: 87-96.

[13]

Inniss MC, Silver PA. Building synthetic memory. Curr Biol, 2013, 23: R812-R816.

[14]

Jennewein S, Wildung MR, Chau M, Walker K, Croteau R. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci USA, 2004, 101: 9149-9154.

[15]

Joyet P, Derkaoui M, Poncet S, Deutscher J. Control of Bacillus subtilis mtl operon expression by complex phosphorylation-dependent regulation of the transcriptional activator MtlR. Mol Microbiol, 2010, 76: 1279-1294.

[16]

Kim IC, Cha JH, Kim JR, Jiang SY, Seo BC, Cheong TK, Lee DS, Choi YD, Park KH. Catalytic properties of the cloned amylase from Bacillus licheniformis. J Biol Chem, 1992, 267: 22108-22114.

[17]

Kluge J, Terfehr D, Kück U. Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi. Appl Microbiol Biotechnol, 2018, 102: 6357-6372.

[18]

Kong WT, CeliK V, Liao C, Hua Q, Lu T. Programming the group behaviors of bacterial communities with synthetic cellular communication. Bioresour Bioprocess, 2014, 1: 24.

[19]

Kraus A, Küster E, Wagner A, HoffmannHillen KW. Identification of a co-repressor binding site in catabolite control protein CcpA. Mol Microbiol, 2010, 30: 955-963.

[20]

Langa S, Peiroten A, Arques JL, Landete JM. Catabolite responsive elements as a strategy for the control of heterologous gene expression in lactobacilli. Appl Microbiol Biotechnol, 2021, 105: 225-233.

[21]

Leisner M, Stingl K, Radler JO, Maier B. Basal expression rate of ComK sets a ‘switching-window’ into the K-state of Bacillus subtilis. Mol Microbiol, 2007, 63: 1806-1816.

[22]

Leonard E, Ajikumar PK, Thayer K, Xiao WH, Mo JD, Tidor B, Stephanopoulos G, Prather KL. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci USA, 2010, 107: 13654-13659.

[23]

Li Y, Jin K, Zhang L, Ding Z, Gu Z, Shi G. Development of an inducible secretory expression system in Bacillus licheniformis based on an engineered xylose operon. J Agric Food Chem, 2018, 66: 9456-9464.

[24]

Lorca GL, Chung YJ, Barabote RD, Weyler W, Schilling CH, Saier MH. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK. J Bacteriol, 2005, 187: 7826-7839.

[25]

Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 2012, 335: 716-719.

[26]

Mirouze N, Prepiak P, Dubnau D. Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis. PLoS Genet, 2011, 7: e1002048.

[27]

Perez-Carrasco R, Guerrero P, Briscoe J, Page KM. Intrinsic noise profoundly alters the dynamics and steady state of morphogen-controlled bistable genetic switches. PLoS Comput Biol, 2016, 12: e1005154.

[28]

Rajput A, Kaur K, Kumar M. SigMol: repertoire of quorum sensing signaling molecules in prokaryotes. Nucleic Acids Res, 2016, 44: D634-D639.

[29]

Schaerli Y, Munteanu A, Gili M, Cotterell J, Sharpe J, Isalan M. A unified design space of synthetic stripe-forming networks. Nat Commun, 2014, 5: 4905.

[30]

Schumacher MA, Balani P, Min J, Chinnam NB, Hansen S, Vulić M, Lewis K, Brennan RG. HipBA–promoter structures reveal the basis of heritable multidrug tolerance. Nature, 2015, 524: 59.

[31]

Seo SO, Schmidt-Dannert C. Development of a synthetic cumate-inducible gene expression system for Bacillus. Appl Microbiol Biotechnol, 2019, 103: 303-313.

[32]

Wang B, Kitney RI, Joly N, Buck M. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun, 2011, 2: 508.

[33]

Weickert MJ, Chambliss GH. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci USA, 1990, 87: 6238-6242.

[34]

Wu Y, Chen T, Liu Y, Tian R, Lv X, Li J, Du G, Chen J, Ledesma-Amaro R, Liu L. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Res, 2020, 48: 996-1009.

[35]

Wu Z, Li Y, Xu Y, Zhang Y, Tao G, Zhang L, Shi G. Transcriptome analysis of Bacillus licheniformis for improving bacitracin production. ACS Synth Biol, 2022, 11: 1325-1335.

[36]

Xiao F, Li Y, Zhang Y, Wang H, Zhang L, Ding Z, Gu Z, Xu S, Shi G. Construction of a novel sugar alcohol-inducible expression system in Bacillus licheniformis. Appl Microbiol Biotechnol, 2020, 104: 5409-5425.

[37]

Xiao F, Li Y, Zhang Y, Wang H, Zhang L, Ding Z, Gu Z, Xu S, Shi G. A new CcpA binding site plays a bidirectional role in carbon catabolism in Bacillus licheniformis. iScience., 2021, 24: 102400.

[38]

Xie Y, Yang Y, He Y, Wang X, Zhang P, Li H, Liang S. Synthetic biology speeds up drug target discovery. Front Pharmacol, 2020, 11: 119.

[39]

Xu X, Li X, Liu Y, Zhu Y, Li J, Du G, Chen J, Ledesma-Amaro R, Liu L. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nat Chem Biol, 2020, 16: 1261-1268.

[40]

Xu Y, Li Y, Wu Z, Lu Y, Tao G, Zhang L, Ding Z, Shi G. Combining precursor-directed engineering with modular designing: an effective strategy for de novo biosynthesis of L-DOPA in Bacillus licheniformis. ACS Synth Biol, 2022, 11: 700-712.

[41]

Xu P, Gu Q, Wang W, Wong L, Bower AG, Collins CH, Koffas MA. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun, 2013, 4: 1409.

[42]

Yang Y, Zhang L, Huang H, Yang C, Yang S, Gu Y, Jiang W. A flexible binding site architecture provides new insights into CcpA global regulation in Gram-Positive bacteria. Mbio, 2017

[43]

Yoshida K, Yamaguchi H, Kinehara M, Ohki YH, Nakaura Y, Fujita Y. Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box. Mol Microbiol, 2003, 49: 157-165.

[44]

Yu W, Chen Z, Ye H, Liu P, Li Z, Wang Y, Li Q, Yan S, Zhong CJ, He N. Effect of glucose on poly-gamma-glutamic acid metabolism in Bacillus licheniformis. Microb Cell Fact, 2017, 16: 22.

[45]

Zhang Y, Li Y, Xiao F, Wang H, Zhang L, Ding Z, Xu S, Gu Z, Shi G. Engineering of a biosensor in response to malate in Bacillus licheniformis. ACS Synth Biol, 2021, 10: 1775-1784.

Funding

National Key Research & Development Program of China(2020YFA0907700)

the National Natural Foundation of China(32172174)

National First-Class Discipline Program of Light Industry Technology and Engineering(LITE2018-22)

the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions

the Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX21-2027)

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/