Cultivation and application of nicotine-degrading bacteria and environmental functioning in tobacco planting soil

Yiting Wang , Xiangyan Luo , Peng Chu , Heli Shi , Rui Wang , Jiale Li , Shixue Zheng

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 10

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 10 DOI: 10.1186/s40643-023-00630-x
Research

Cultivation and application of nicotine-degrading bacteria and environmental functioning in tobacco planting soil

Author information +
History +
PDF

Abstract

Chitinophaga spp. and Flavobacterium spp. were first confirmed as NDB.

52 NDB strains from seven genera were isolated from tobacco rhizosphere soil.

Strains ND6 and ND16 efficiently degraded nicotine in medium and tobacco waste compost.

ND16 may have a new nicotine-degrading pathway by phenotype and genome analysis.

Abundance of five nicotine-degrading genes in soil correlated well with nicotine concentrations.

Keywords

Nicotine-degrading bacteria (NDB) / Isolation / Metabolic pathway / Metagenomics / Compost of tobacco waste

Cite this article

Download citation ▾
Yiting Wang, Xiangyan Luo, Peng Chu, Heli Shi, Rui Wang, Jiale Li, Shixue Zheng. Cultivation and application of nicotine-degrading bacteria and environmental functioning in tobacco planting soil. Bioresources and Bioprocessing, 2023, 10(1): 10 DOI:10.1186/s40643-023-00630-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Araújo MCB, Costa MF. From plant to waste: the long and diverse impact chain caused by tobacco smoking. Int J Environ Res Public Health, 2019, 16: 2690.

[2]

Cai JX, Li B, Chen CY, Wang J, Zhao M, Zhang K. Hydrothermal carbonization of tobacco stalk for fuel application. Bioresour Technol, 2016, 220: 305-311.

[3]

Chaffee BW, Couch ET, Vora MV, Holliday RS. Oral and periodontal implications of tobacco and nicotine products. Periodontol 2000, 2021, 87: 241-253.

[4]

Chen B, Sun LL, Zeng GY, Shen Z, Wang K, Yin LM, Xu F, Wang PC, Ding Y, Nie QX, Wu Q, Zhang ZW, Xia JL, Lin J, Luo YH, Cai J, Krausz KW, Zheng RM, Xue YX, Zheng MH, Li Y, Yu CH, Gonzalez FJ, Jiang CT. Gut bacteria alleviate smoking-related NASH by degrading gut nicotine. Nature, 2022, 610: 562-568.

[5]

Cheng YD, Bai YX, Jia M, Chen Y, Wang D, Wu T, Wang G, Yang HW. Potential risks of nicotine on the germination, growth, and nutritional properties of broad bean. Ecotoxicol Environ Saf, 2021, 209: 111797.

[6]

Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, Costa MS, Rooney AP, Yi H, Xu XW, Meyer SD. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol, 2018, 68: 461-466.

[7]

Deay DO, Colvert KK, Gao F, Seibold S, Goyal P, Aillon D, Petillo PA, Richter ML. An active site mutation in 6-hydroxy-l-Nicotine oxidase from Arthrobacter nicotinovorans changes the substrate specificity in favor of (S)-nicotine. Arch Biochem Biophys, 2020, 692: 108520.

[8]

Di HH, Wang R, Ren XH, Deng JQ, Deng XH, Bu GJ. Co-composting of fresh tobacco leaves and soil: an exploration on the utilization of fresh tobacco waste in farmland. Environ Sci Pollut Res Int, 2022, 29: 8191-8204.

[9]

Guo XH, Xie CY, Wang LJ, Li QF, Wang Y. Biodegradation of persistent environmental pollutants by Arthrobacter sp. Environ Sci Pollut Res Int, 2019, 26: 8429-8443.

[10]

Herman M, Tarran R. E-cigarettes, nicotine, the lung and the brain: multi-level cascading pathophysiology. J Physiol, 2020, 598: 5063-5071.

[11]

Hu HY, Wang LJ, Wang WW, Wu G, Tao F, Xu P, Deng ZX, Tang HZ. Regulatory mechanism of nicotine degradation in Pseudomonas putida. Mbio, 2019

[12]

Huang HY, Shang JM, Wang SN. Physiology of a hybrid pathway for nicotine catabolism in bacteria. Front Microbiol, 2020, 11: 598207.

[13]

Jablonski JE, Schlesser JE, Mariappagoudar P. HPLC-UV method for nicotine, strychnine, and aconitine in dairy products. J Agric Food Chem, 2006, 54: 7460-7465.

[14]

Lam J, Schneider J, Shadbegian R, Pega F, Claire SS, Novotny TE. Modelling the global economic costs of tobacco product waste. Bull World Health Organ, 2022, 100: 620-627.

[15]

Li HL, Xie KB, Yu WJ, Hu LJ, Huang HY, Xie HJ, Wang SN. Nicotine dehydrogenase complexed with 6-Hydroxypseudooxynicotine oxidase involved in the hybrid nicotine-degrading pathway in Agrobacterium tumefaciens S33. Appl Environ Microbiol, 2016, 82: 1745-1755.

[16]

Liu YH, Wang LJ, Huang KM, Wang WW, Nie XL, Jiang Y, Li PP, Liu SS, Xu P, Tang HZ. Physiological and biochemical characterization of a novel nicotine-degrading bacterium Pseudomonas geniculata N1. PLoS ONE, 2014, 9: e84399.

[17]

Liu JL, Ma GH, Chen T, Hou Y, Yang SH, Zhang KQ, Yang JH. Nicotine-degrading microorganisms and their potential applications. Appl Microbiol Biotechnol, 2015, 99: 3775-3785.

[18]

McGrath-Morrow SA, Gorzkowski J, Groner JA, Rule AM, Wilson K, Tanski SE, Collaco JM, Klein JD. The effects of nicotine on development. Pediatrics, 2020, 145: e20191346.

[19]

Mihasan M, Chiribau CB, Friedrich T, Artenie V, Brandsch R. An NAD(P)H-nicotine blue oxidoreductase is part of the nicotine regulon and may protect Arthrobacter nicotinovorans from oxidative stress during nicotine catabolism. Appl Environ Microbiol, 2007, 73: 2479-2485.

[20]

Mu Y, Chen Q, Parales RE, Lu ZM, Hong Q, He J, Qiu JG, Jiang JD. Bacterial catabolism of nicotine: catabolic strains, pathways and modules. Environ Res, 2020, 183: 109258.

[21]

Novotny TE, Zhao F. Consumption and production waste: another externality of tobacco use. Tob Control, 1999, 8: 75-80.

[22]

Ruan A, Min H, Peng X, Huang Z. Isolation and characterization of Pseudomonas sp. strain HF-1, capable of degrading nicotine. Res Microbiol, 2005, 156: 700-706.

[23]

Sabzali A, Nikaeen M, Bina B. Performance evaluation of cigarette filter rods as a biofilm carrier in an anaerobic moving bed biofilm reactor. Environ Technol, 2012, 33: 1803-1810.

[24]

Sachelaru P, Schiltz E, Igloi GL, Brandsch R. An alpha/beta-fold C-C bond hydrolase is involved in a central step of nicotine catabolism by Arthrobacter nicotinovorans. J Bacteriol, 2005, 187: 8516-8519.

[25]

Schenk S, Hoelz A, Krauss B, Decker K. Gene structures and properties of enzymes of the plasmid-encoded nicotine catabolism of Arthrobacter nicotinovorans. J Mol Biol, 1998, 284: 1323-1339.

[26]

Shang C, Chen A, Chen GQ, Li HK, Guan S, He JM. Microbial biofertilizer decreases nicotine content by improving soil nitrogen supply. Appl Biochem Biotechnol, 2017, 181: 1-14.

[27]

Shang JM, Wang X, Zhang M, Li LX, Wang RF, Huang HY, Wang SN. An NAD-specific 6-Hydroxy-3-succinoyl-semialdehyde-pyridine dehydrogenase from nicotine-degrading Agrobacterium tumefaciens strain S33. Microbiol Spectr, 2021, 9: e0092421.

[28]

Wang X, Tang L, Yao YL, Wang HX, Min H, Lu ZM. Bioremediation of the tobacco waste-contaminated soil by Pseudomonas sp. HF-1: nicotine degradation and microbial community analysis. Appl Microbiol Biotechnol, 2013, 97: 6077-6088.

[29]

Wang R, Shi HL, Chen SW (2015) Isolation of nicotine degradation bacterium strain and its application. China Academic Journal Electronic Publishing House. P 1212–1224

[30]

Wang W, Zhu X, Liu X, Wu W, Xu P, Tang H. Cloning and characterization the nicotine degradation enzymes 6-hydroxypseudooxynicotine amine oxidase and 6-hydroxy-3-succinoylpyridine hydroxylase in Pseudomonas geniculata N1. Int Biodeterior Biodegrad, 2019, 142: 83-90.

[31]

Wittenberg RE, Wolfman SL, Biasi MD, Dani JA. Nicotinic acetylcholine receptors and nicotine addiction: a brief introduction. Neuropharmacology, 2020, 177: 108256.

[32]

Xia ZY, Lei LP, Zhang HY, Wei HL. Characterization of the ModABC molybdate transport system of Pseudomonas putida in nicotine degradation. Front Microbiol, 2018, 9: 3030.

[33]

Ye JB, Zhang Z, Yan J, Hao H, Liu XZ, Yang ZC, Ma K, Yang XP, Mao DP, Zhou H. Degradation of phytosterols in tobacco waste extract by a novel Paenibacillus sp. Biotechnol Appl Biochem, 2017, 64: 843-850.

[34]

Yu H, Tang HZ, Wang LJ, Yao YX, Wu G, Xu P. Complete genome sequence of the nicotine-degrading Pseudomonas putida strain S16. J Bacteriol, 2011, 193: 5541-5542.

[35]

Zhang ZL, Mei XT, He ZL, Xie XY, Yang Y, Mei CY, Xue D, Hu T, Shu M, Zhong WH. Nicotine metabolism pathway in bacteria: mechanism, modification, and application. Appl Microbiol Biotechnol, 2022, 106: 889-904.

[36]

Zhao L, Zhu C, Gao Y, Wang C, Li X, Shu M, Shi Y, Zhong WH. Nicotine degradation enhancement by Pseudomonas stutzeri ZCJ during aging process of tobacco leaves. World J Microbiol Biotechnol, 2012, 28: 2077-2086.

[37]

Zhong WH, Zhu CJ, Shu M, Sun KD, Zhao L, Wang C, Ye ZJ, Chen JM. Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD Bioresour Technol, 2010, 101: 6935-6941.

[38]

Zou XD, Bk A, Abu-Izneid T, Aziz A, Devnath P, Rauf A, Mitra S, Emran TB, Mujawah AAH, Lorenzo JM, Mubarak MS, Wilairatana P, Suleria HAR. Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: a review. Biomed Pharmacother, 2021, 143: 112191.

Funding

Hubei Tobacco Company(20191307C04)

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/