Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture

Anna-Lena Thurn , Anna Stock , Sebastian Gerwald , Dirk Weuster-Botz

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 130

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 130 DOI: 10.1186/s40643-022-00612-5
Research

Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture

Author information +
History +
PDF

Abstract

Marine microalgae have received much attention as a sustainable source of the two health beneficial omega-3-fatty acids docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5). However, photoautotrophic monocultures of microalgae can only produce either DHA or EPA enriched biomass. An alternative may be the photoautotrophic co-cultivation of Tisochrysis lutea as DHA-producer with Microchloropsis salina for simultaneous EPA production to obtain EPA- and DHA-rich microalgae biomass in a nutritionally balanced ratio. Photoautotrophic co-cultivation processes of T. lutea and M. salina were studied, applying scalable and fully controlled lab-scale gas-lift flat-plate photobioreactors with LED illumination for dynamic climate simulation of a repeated sunny summer day in Australia [day–night cycles of incident light (PAR) and temperature]. Monocultures of both marine microalgae were used as reference batch processes. Differences in the autofluorescence of both microalgae enabled the individual measurement, of cell distributions in co-culture, by flow cytometry. The co-cultivation of T. lutea and M. salina in artificial sea water with an inoculation ratio of 1:3 resulted in a balanced biomass production of both microalgae simultaneously with a DHA:EPA ratio of almost 1:1 (26 mgDHA gCDW −1, and 23 mgEPA gCDW −1, respectively) at harvest after depletion of the initially added fertilizer. Surprisingly, more microalgae biomass was produced within 8 days in co-cultivation with an increase in the cell dry weight (CDW) concentration by 31%, compared to the monocultures with the same amount of light and fertilizer. What is more, DHA-content of the microalgae biomass was enhanced by 33% in the co-culture, whereas EPA-content remained unchanged compared to the monocultures.

Keywords

Docosahexaenoic acid (DHA) / Eicosapentaenoic acid (EPA) / Microchloropsis salina / Tisochrysis lutea / Co-cultivation / Photoautotrophic microalgae

Cite this article

Download citation ▾
Anna-Lena Thurn, Anna Stock, Sebastian Gerwald, Dirk Weuster-Botz. Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture. Bioresources and Bioprocessing, 2022, 9(1): 130 DOI:10.1186/s40643-022-00612-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Duck B (2018) Basic measurements of radiation at station Newcastle (2017–11) Retrieved from: https://doi.org/10.1594/PANGAEA.896530

[2]

Adarme-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact, 2012, 11(1): 96.

[3]

Aussant J, Guihéneuf F, Stengel DB. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae. Appl Microbiol Biotechnol, 2018, 102(12): 5279-5297.

[4]

Barta DG, Coman V, Vodnar DC. Microalgae as sources of omega-3 polyunsaturated fatty acids: biotechnological aspects. Algal Res, 2021, 58: 102410.

[5]

Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol, 1999, 70(1): 313-321.

[6]

Chen D, Yuan X, Zheng X, Fang J, Lin G, Li R, Xue T. Multi-omics analyses provide insight into the biosynthesis pathways of fucoxanthin in Isochrysis galbana. Genom Proteom Bioinform, 2022

[7]

Chua E, Schenk P. A biorefinery for Nannochloropsis: induction, harvesting, and extraction of EPA-rich oil and high-value protein. Biores Technol, 2017

[8]

Cleland LG, James MJ, Proudman SM. The role of fish oils in the treatment of rheumatoid arthritis. Drugs, 2003, 63(9): 845-853.

[9]

Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ. Food commodities from microalgae. Curr Opin Biotechnol, 2013, 24(2): 169-177.

[10]

EFSA Panel on Dietetic Products, N., & Allergies. Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J, 2012, 10(7): 2815.

[11]

FAO FAAO (2018) The state of world fisheries and aquaculture 2018

[12]

Fawley MW, Jameson I, Fawley KP. The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. Nov. and Microchloropsis gen. nov. Phycologia, 2015, 54(5): 545-552.

[13]

Gharat K, Agarwal A, Pandit RA, Lali AM. Development of fed batch strategies to improve the production of eicosapentaenoic acid from a marine microalga Nannochloropsis oculata. Bioresour Technol Rep, 2018, 4: 193-201.

[14]

Gogus U, Smith C. n − 3 Omega fatty acids: a review of current knowledge. Int J Food Sci Technol, 2010, 45(3): 417-436.

[15]

Gu W, Kavanagh JM, McClure DD. Towards a sustainable supply of omega-3 fatty acids: screening microalgae for scalable production of eicosapentaenoic acid (EPA). Algal Res, 2022, 61: 102564.

[16]

Guihéneuf F, Stengel DB. LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n − 3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Mar Drugs, 2013, 11(11): 4246-4266.

[17]

Hamilton ML, Warwick J, Terry A, Allen MJ, Napier JA, Sayanova O. Towards the industrial production of omega-3 long chain polyunsaturated fatty acids from a genetically modified diatom Phaeodactylum tricornutum. PLoS ONE, 2015, 10(12): e0144054.

[18]

Havel J, Franco-Lara E, Weuster-Botz D. A parallel bubble column system for the cultivation of phototrophic microorganisms. Biotechnol Lett, 2008, 30(7): 1197-1200.

[19]

Hu H, Ma L-L, Shen X-F, Li J-Y, Wang H-F, Zeng RJ. Effect of cultivation mode on the production of docosahexaenoic acid by Tisochrysis lutea. AMB Express, 2018, 8(1): 50.

[20]

Hu H, Li JY, Pan XR, Zhang F, Ma LL, Wang HJ, Zeng RJ. Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. Sci Total Environ, 2019, 656: 140-149.

[21]

Huerlimann R, de Nys R, Heimann K. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng, 2010, 107(2): 245-257.

[22]

Hulatt CJ, Wijffels RH, Bolla S, Kiron V. Production of fatty acids and protein by nannochloropsis in flat-plate photobioreactors. PLoS ONE, 2017, 12(1): e0170440.

[23]

Ishika T, Moheimani NR, Laird DW, Bahri PA. Stepwise culture approach optimizes the biomass productivity of microalgae cultivated using an incremental salinity increase strategy. Biomass Bioenerg, 2019, 127.

[24]

Kim G, Bae J, Lee K. Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp. Biores Technol, 2016, 205: 274-279.

[25]

Kuczynska P, Jemiola-Rzeminska M, Strzalka K. Photosynthetic pigments in diatoms. Mar Drugs, 2015, 13(9): 5847-5881.

[26]

Lin Y-H, Chang F-L, Tsao C-Y, Leu J-Y. Influence of growth phase and nutrient source on fatty acid composition of Isochrysis galbana CCMP 1324 in a batch photoreactor. Biochem Eng J, 2007, 37(2): 166-176.

[27]

Maglie M, Baldisserotto C, Guerrini A, Sabia A, Ferroni L, Pancaldi S. A co-cultivation process of Nannochloropsis oculata and Tisochrysis lutea induces morpho-physiological and biochemical variations potentially useful for biotechnological purposes. J Appl Phycol, 2021, 33(5): 2817-2832.

[28]

Metting FB. Biodiversity and application of microalgae. J Ind Microbiol, 1996, 17(5): 477-489.

[29]

Molina Grima E, Sánchez Pérez JA, García Camacho F, Fernández Sevilla JM, Acién Fernández FG. Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture. Appl Microbiol Biotechnol, 1994, 41(1): 23-27.

[30]

Napier JA, Usher S, Haslam RP, Ruiz-Lopez N, Sayanova O. Transgenic plants as a sustainable, terrestrial source of fish oils. Eur J Lipid Sci Technol, 2015, 117(9): 1317-1324.

[31]

Nielsen GL, Faarvang KL, Thomsen BS, Teglbjærg KL, Jensen LT, Hansen TM, Ernst E. The effects of dietary supplementation with n − 3 polyunsaturated fatty acids in patients with rheumatoid arthritis: a randomized, double blind trial. Eur J Clin Invest, 1992, 22: 1.

[32]

Pfaffinger CE, Schöne D, Trunz S, Löwe H, Weuster-Botz D. Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algal Res, 2016, 20: 153-163.

[33]

Pfaffinger CE, Severin TS, Apel AC, Göbel J, Sauter J, Weuster-Botz D. Light-dependent growth kinetics enable scale-up of well-mixed phototrophic bioprocesses in different types of photobioreactors. J Biotechnol, 2019, 297: 41-48.

[34]

Polishchuk A, Valev D, Tarvainen M, Mishra S, Kinnunen V, Antal T, Tyystjärvi E. Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry. Biores Technol, 2015, 193: 469-476.

[35]

Poudyal H, Panchal SK, Diwan V, Brown L. Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res, 2011, 50(4): 372-387.

[36]

Rasdi NW, Qin JG. Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. J Appl Phycol, 2015, 27(6): 2221-2230.

[37]

Rashid N, Ryu AJ, Jeong KJ, Lee B, Chang Y-K. Co-cultivation of two freshwater microalgae species to improve biomass productivity and biodiesel production. Energy Convers Manag, 2019, 196: 640-648.

[38]

Remize M, Brunel Y, Silva JL, Berthon JY, Filaire E. Microalgae n − 3 PUFAs production and use in food and feed industries. Mar Drugs, 2021

[39]

Rennie KL, Hughes J, Lang R, Jebb SA. Nutritional management of rheumatoid arthritis: a review of the evidence. J Hum Nutr Diet, 2003, 16(2): 97-109.

[40]

Riemann B. Carotenoid interference in the spectrophotometry determination of chlorophyll degradation products from natural populations of phytoplankton1. Limnol Oceanogr, 1978, 23(5): 1059-1066.

[41]

Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng, 2009, 102(1): 100-112.

[42]

Ryckebosch E, Muylaert K, Foubert I. Optimization of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc, 2012, 89(2): 189-198.

[43]

Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem, 2014, 160: 393-400.

[44]

San Pedro A, González-López CV, Acién FG, Molina-Grima E. Outdoor pilot-scale production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in tubular photobioreactors. Biores Technol, 2014, 169: 667-676.

[45]

Schädler T, Caballero Cerbon D, de Oliveira L, Garbe D, Brück T, Weuster-Botz D. Production of lipids with Microchloropsis salina in open thin-layer cascade photobioreactors. Bioresour Technol, 2019, 289.

[46]

Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Hankamer B. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res, 2008, 1(1): 20-43.

[47]

Sijtsma L, de Swaaf ME. Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol, 2004, 64(2): 146-153.

[48]

Slocombe SP, Zhang Q, Ross M, Anderson A, Thomas NJ, Lapresa Á, Day JG. Unlocking nature’s treasure-chest: screening for oleaginous algae. Sci Rep, 2015, 5(1): 9844.

[49]

Sun Z, Wang X, Liu J. Screening of Isochrysis strains for simultaneous production of docosahexaenoic acid and fucoxanthin. Algal Res, 2019, 41: 101545.

[50]

Tejido-Nuñez Y, Aymerich E, Sancho L, Refardt D. Co-cultivation of microalgae in aquaculture water: interactions, growth and nutrient removal efficiency at laboratory- and pilot-scale. Algal Res, 2020, 49.

[51]

Tocher DR. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture, 2015, 449: 94-107.

[52]

Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients, 2019, 11(1): 89.

[53]

Volker DH, Fitzgerald P, Major GA, Garg M. Efficacy of fish oil concentrate in the treatment of rheumatoid arthritis. J Rheumatol, 2000, 27(10): 2343-2346.

[54]

Wang B, Li Y, Wu N, Lan CQ. CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol, 2008, 79(5): 707-718.

[55]

Winwood R. Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. OCL, 2013, 20: D604.

[56]

Wolf L, Cummings T, Müller K, Reppke M, Volkmar M, Weuster-Botz D. Production of β-carotene with Dunaliella salina CCAP19/18 at physically simulated outdoor conditions. Eng Life Sci, 2021, 21(3–4): 115-125.

[57]

Zhao P, Yu X, Li J, Tang X, Huang Z. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. J Biosci Bioeng, 2014, 118(1): 72-77.

Funding

Technische Universität München (1025)

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/