Enhancing menaquinone-7 biosynthesis by adaptive evolution of Bacillus natto through chemical modulator

Bei Zhang , Cheng Peng , Jianyao Lu , Xuechao Hu , Lujing Ren

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 120

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 120 DOI: 10.1186/s40643-022-00609-0
Research

Enhancing menaquinone-7 biosynthesis by adaptive evolution of Bacillus natto through chemical modulator

Author information +
History +
PDF

Abstract

Menaquinone-7 (MK-7) is a kind of vitamin K2 playing an important role in the treatment and prevention of cardiovascular disease, osteoporosis and arterial calcification. The purpose of this study is to establish an adaptive evolution strategy based on a chemical modulator to improve MK-7 biosynthesis in Bacillus natto. The inhibitor of 5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase), glyphosate, was chosen as the chemical modulator to perform the experiments. The final strain ALE-25–40, which was obtained after 40 cycles in 25 mmol/L glyphosate, showed a maximal MK-7 titer of 62 mg/L and MK-7 productivity of 0.42 mg/(L h), representing 2.5 and 3 times the original strain, respectively. Moreover, ALE-25–40 generated fewer spores and showed a higher NADH and redox potential. Furthermore, the mechanism related to the improved performance of ALE-25–40 was investigated by comparative transcriptomics analysis. Genes related to the sporation formation were down-regulated. In addition, several genes related to NADH formation were also up-regulated. This strategy proposed here may provide a new and alternative directive for the industrial production of vitamin K2.

Keywords

Menaquinone-7 / Bacillus natto / Adaptive evolution / Glyphosate / EPSE synthase

Cite this article

Download citation ▾
Bei Zhang, Cheng Peng, Jianyao Lu, Xuechao Hu, Lujing Ren. Enhancing menaquinone-7 biosynthesis by adaptive evolution of Bacillus natto through chemical modulator. Bioresources and Bioprocessing, 2022, 9(1): 120 DOI:10.1186/s40643-022-00609-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alenazi J, Mayclin S, Subramanian S, Myler PJ, Asojo OA. Crystal structure of a short-chain dehydrogenase/reductase from Burkholderia phymatum in complex with NAD. Acta Crystallogr F Struct Biol Commun, 2022, 78: 52-58.

[2]

Berenjian A, Mahanama R, Talbot A, Regtop H, Kavanagh J, Dehghani F. Designing of an intensification process for biosynthesis and recovery of menaquinone-7. Appl Biochem Biotech, 2014, 172(3): 1347-1357.

[3]

Braissant O, Astasov-Frauenhoffer M, Waltimo T, Bonkat G. A Review of methods to determine viability, vitality, and metabolic rates in microbiology. Front Microbiol, 2020

[4]

Brudzynski K, Flick R. Accumulation of soluble menaquinones MK-7 in honey coincides with death of Bacillus spp. present in honey. Food Chem X, 2019

[5]

Cubas-Cano E, Lopez-Gomez JP, Gonzalez-Fernandez C, Ballesteros I, Tomas-Pejo E. Towards sequential bioethanol and l-lactic acid co-generation: improving xylose conversion to l-lactic acid in presence of lignocellulosic ethanol with an evolved Bacillus coagulans. Renew Energ, 2020, 153: 759-765.

[6]

Cui SX, Lv XQ, Wu YK, Li JH, Du GC, Ledesma-Amaro R, Liu L. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. Acs Synth Biol, 2019, 8(8): 1826-1837.

[7]

Cui SX, Xia HZ, Chen TC, Gu Y, Lv XQ, Liu YF, Li JH, Du GC, Liu L. Cell membrane and electron transfer engineering for improved synthesis of menaquinone-7 in Bacillus subtilis. Iscience, 2020

[8]

Dahal G, Viola RE. Structure of a fungal form of aspartate semialdehyde dehydrogenase from Cryptococcus neoformans. Acta Crystallogr F Struct Biol Commun, 2015, 71: 1365-1371.

[9]

Diao JJ, Song XY, Cui JY, Liu LS, Shi ML, Wang FZ, Zhang WW. Rewiring metabolic network by chemical modulator based laboratory evolution doubles lipid production in Crypthecodinium cohnii. Metab Eng, 2019, 51: 88-98.

[10]

Dowds BCA. The oxidative stress–response in Bacillus-subtilis. Fems Microbiol Lett, 1994, 124(3): 255-263.

[11]

Dragosits M, Mattanovich D. Adaptive laboratory evolution—principles and applications for biotechnology. Microb Cell Fact, 2013

[12]

Espinosa MI, Gonzalez-Garcia RA, Valgepea K, Plan MR, Scott C, Pretorius IS, Marcellin E, Paulsen IT, Williams TC. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat Commun, 2020

[13]

Gao QX, Chen H, Wang WZ, Huang JZ, Tao Y, Lin BX. Menaquinone-7 production in engineered Escherichia coli. World J Microb Biot, 2020

[14]

Godde D, Trebst A. NADH as electron-donor for the photosynthetic membrane of Chlamydomonas-reinhardii. Arch Microbiol, 1980, 127(3): 245-252.

[15]

Hashimoto T, Naylor HB. Studies of the fine structure of microorganisms. II. Electron microscopic studies on sporulation of clostridium sporogenes. J Bacteriol, 1958, 75(6): 647-653.

[16]

Hertel R, Gibhardt J, Martienssen M, Kuhn R, Commichau FM. Molecular mechanisms underlying glyphosate resistance in bacteria. Environ Microbiol, 2021, 23(6): 2891-2905.

[17]

Hu XC, Liu WM, Luo MM, Ren LJ, Ji XJ, Huang H. Enhancing menaquinone-7 production by Bacillus natto R127 through the nutritional factors and surfactant. Appl Biochem Biotech, 2017, 182(4): 1630-1641.

[18]

Im S, Joe M, Kim D, Park DH, Lim S. Transcriptome analysis of salt-stressed Deinococcus radiodurans and characterization of salt-sensitive mutants. Res Microbiol, 2013, 164(9): 923-932.

[19]

Imamura D. Identification and characterization of the outermost layer of Bacillus subtilis spores. Yakugaku Zasshi, 2012, 132(8): 919-924.

[20]

Imamura D, Kuwana R, Takamatsu H, Watabe K. Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J Bacteriol, 2011, 193(16): 4075-4080.

[21]

Johnston JM, Bulloch EMM. Advances in menaquinone biosynthesis: sublocalisation and allosteric regulation. Curr Opin Struc Biol, 2020, 65: 33-41.

[22]

Jun D, Richardson-Sanchez T, Mahey A, Murphy MEP, Fernandez RC, Beatty JT. Introduction of the menaquinone biosynthetic pathway into Rhodobacter sphaeroides and de novo synthesis of menaquinone for incorporation into heterologously expressed integral membrane proteins. Acs Synth Biol, 2020, 9(5): 1190-1200.

[23]

Jurkovic S, Osredkar J, Marc J. Molecular impact of glutathione peroxidases in antioxidant processes. Biochem Medica, 2008, 18(2): 162-174.

[24]

Kaur G, Guruprasad K, Temple BRS, Shirvanyants DG, Dokholyan NV, Pati PK. Structural complexity and functional diversity of plant NADPH oxidases. Amino Acids, 2018, 50(1): 79-94.

[25]

Liu Y, Xue ZL, Chen SP, Wang Z, Zhang Y, Gong WL, Zheng ZM. A high-throughput screening strategy for accurate quantification of menaquinone based on fluorescence-activated cell sorting. J Ind Microbiol Biot, 2016, 43(6): 751-760.

[26]

Liu N, Ruan HZ, Liu LM, Zhang WG, Xu JZ. Temperature-induced mutagenesis-based adaptive evolution of Bacillus amyloliquefaciens for improving the production efficiency of menaquinone-7 from starch. J Chem Technol Biot, 2021, 96(4): 1040-1048.

[27]

Luo MM, Ren LJ, Chen SL, Ji XJ, Huang H. Effect of media components and morphology of Bacillus natto on menaquinone-7 synthesis in submerged fermentation. Biotechnol Bioproc E, 2016, 21(6): 777-786.

[28]

Ma XC, Zhu SY, Luo MM, Hu XC, Peng C, Huang H, Ren LJ. Intracellular response of Bacillus natto in response to different oxygen supply and its influence on menaquinone-7 biosynthesis. Bioproc Biosyst Eng, 2019, 42(5): 817-827.

[29]

Maeda T, Horinouchi T, Sakata N, Sakai A, Furusawa C. High-throughput identification of the sensitivities of an Escherichia coli Delta recA mutant strain to various chemical compounds. J Antibiot, 2019, 72(7): 566-573.

[30]

Molle V, Fujita M, Jensen ST, Eichenberger P, Gonzalez-Pastor JE, Liu JS, Losick R. The Spo0A regulon of Bacillus subtilis. Mol Microbiol, 2003, 50(5): 1683-1701.

[31]

Peng C, Zhu SY, Lu JY, Hu XC, Ren LJ. Transcriptomic analysis of gene expression of menaquinone-7 in Bacillus subtilis natto toward different oxygen supply. Food Res Int, 2020

[32]

Ren NQ, Chua H, Chan SY, Hua FL, Tsang YF (2006) Controlling optimal fermentation types by pH and redox potential for bio-hydrogen production. proceedings of the second IASTED international conference on advanced technology in the environmental field, ATEF 2006

[33]

Ren LJ, Peng C, Hu XC, Han YW, Huang H. Microbial production of vitamin K2: current status and future prospects. Biotechnol Adv, 2020

[34]

Riondet C, Cachon R, Wache Y, Alcaraz G, Divies C. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J Bacteriol, 2000, 182(3): 620-626.

[35]

Ruenwai R, Neiss A, Laoteng K, Vongsangnak W, Dalfard AB, Cheevadhanarak S, Petranovic D, Nielsen J. Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress. Biotechnol J, 2011, 6(3): 343-356.

[36]

Sella S, Bueno T, de Oliveira AAB, Karp SG, Soccol CR. Bacillus subtilis natto as a potential probiotic in animal nutrition. Crit Rev Biotechnol, 2021, 41(3): 355-369.

[37]

Sun XM, Ren LJ, Ji XJ, Chen SL, Guo DS, Huang H. Adaptive evolution of Schizochytrium sp by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis. Bioresour Technol, 2016, 211: 374-381.

[38]

Vermeervan'THoofd CC, Knapen MHJ, Xanthoulea S. Synthesis of 2-methyl-1,4-naphthoquinones with higher gamma-glutamyl carboxylase activity than MK-4 both in vitro and in vivo. Bioorg Med Chem Lett, 2017, 27(2): 208-211.

[39]

Wang W, Jin Y, Zeng NX, Ruan QW, Qian F. SOD2 facilitates the antiviral innate immune response by scavenging reactive oxygen species. Viral Immunol, 2017, 30(8): 582-589.

[40]

Wang H, Liu H, Wang L, Zhao GH, Tang HF, Sun XW, Ni WF, Yang Q, Wang P, Zheng ZM. Improvement of menaquinone-7 production by Bacillus subtilis natto in a novel residue-free medium by increasing the redox potential. Appl Microbiol Biot, 2019, 103(18): 7519-7535.

[41]

Wu HF, Wang H, Wang P, Zhao GH, Liu H, Wang L, Sun XW, Zheng ZM. Gradient radiation breeding and culture domestication of menaquinone producing strains. Bioproc Biosyst Eng, 2021, 44(7): 1373-1382.

[42]

Wu Y, Jameel A, Xing X-H, Zhang C. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol, 2022, 40(1): 38-59.

[43]

Xu W, Yao J, Liu LJ, Ma X, Li W, Sun XJ, Wang Y. Improving squalene production by enhancing the NADPH/NADP(+) ratio, modifying the isoprenoid-feeding module and blocking the menaquinone pathway in Escherichia coli. Biotechnol Biofuels, 2019

[44]

Yang SM, Cao YX, Sun LM, Li CF, Lin X, Cai ZG, Zhang GY, Song H. Modular pathway engineering of Bacillus subtilis to promote de novo biosynthesis of menaquinone-7. Acs Synth Biol, 2019, 8(1): 70-81.

[45]

Yang SM, Wang YP, Cai ZG, Zhang GY, Song H. Metabolic engineering of Bacillus subtilis for high-titer production of menaquinone-7. Aiche J, 2020

[46]

Yuan K, Song P, Li S, Gao S, Wen JP, Huang H. Combining metabolic flux analysis and adaptive evolution to enhance lipase production in Bacillus subtilis. J Ind Microbiol Biot, 2019, 46(8): 1091-1101.

[47]

Zhang LJ, Cao YL, Tong JN, Xu Y. An Alkylpyrazine synthesis mechanism involving L-threonine-3-dehydrogenase describes the production of 2,5-dimethylpyrazine and 2,3,5-trimethylpyrazine by Bacillus subtilis. Appl Environ Microb, 2019

[48]

Zhao YZ, Yang Y. Profiling metabolic states with genetically encoded fluorescent biosensors for NADH. Curr Opin Biotech, 2015, 31: 86-92.

[49]

Zhao CL, Wan YP, Tang GX, Jin Q, Zhang HL, Xu ZN. Comparison of different fermentation processes for the vitamin K2 (Menaquinone-7) production by a novel Bacillus velezensis ND strain. Process Biochem, 2021, 102: 33-41.

[50]

Zhu YQ, Ye LD, Chen ZF, Hu WJ, Shi YH, Chen JB, Wang CF, Li Y, Li WF, Yu HW. Synergic regulation of redox potential and oxygen uptake to enhance production of coenzyme Q(10) in Rhodobacter sphaeroides. Enzyme Microb Tech, 2017, 101: 36-43.

[51]

Zhu YM, Luo XL, Wei MG, Khan A, Munsif F, Huang TW, Pan XL, Shan ZY. Antioxidant enzymatic activity and its related genes expression in cassava leaves at different growth stages play key roles in sustaining yield and drought tolerance under moisture stress. J Plant Growth Regul, 2020, 39(2): 594-607.

Funding

Jiangsu National Synergistic Innovation Center for Advanced Materials(XTD2213)

National Key Project for Synthetic Biology(No. 2019YFA0905700)

National Natural Science Foundation of China(No. 21878151)

Natural Science Foundation of Jiangsu Province(BK20211535)

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/