Dynamic changes in community structure and degradation performance of a bacterial consortium MMBC-1 during the subculturing revival reveal the potential decomposers of lignocellulose

Jingrong Zhu , Jiawen Liu , Weilin Li , Yunrui Ru , Di Sun , Cong Liu , Zongyun Li , Weijie Liu

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 110

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 110 DOI: 10.1186/s40643-022-00601-8
Research

Dynamic changes in community structure and degradation performance of a bacterial consortium MMBC-1 during the subculturing revival reveal the potential decomposers of lignocellulose

Author information +
History +
PDF

Abstract

Bacterial consortium is an important source of lignocellulolytic strains, but it is still a challenge to distinguish the direct decomposers of lignocellulose from other bacteria in such a complex community. This study aims at addressing this issue by focusing on the dynamic changes in community structure and degradation activity of MMBC-1, an established and stable lignocellulolytic bacterial consortium, during its subculturing revival. MMBC-1 was cryopreserved with glycerol as a protective agent and then inoculated for revival. Its enzyme activities for degradation recovered to the maximum level after two rounds of subculturing. Correspondingly, the cellulose and hemicellulose in lignocellulosic carbon source were gradually decomposed during the revival. Meanwhile, the initial dominant bacteria represented by genus Clostridium were replaced by the bacteria belonging to Lachnospira, Enterococcus, Bacillus, Haloimpatiens genera and family Lachnospiraceae. However, only three high-abundance (> 1%) operational taxonomic units (OTUs) (Lachnospira, Enterococcus and Haloimpatiens genera) were suggested to directly engage in lignocellulose degradation according to correlation analysis. By comparison, many low-abundance OTUs, such as the ones belonging to Flavonifractor and Anaerotruncus genera, may play an important role in degradation. These findings showed the dramatic changes in community structure that occurred during the subculturing revival, and paved the way for the discovery of direct decomposers in a stable consortium.

Keywords

Taxonomy / Subculture / Cellulose / Hemicellulose / 16S rRNA gene

Cite this article

Download citation ▾
Jingrong Zhu, Jiawen Liu, Weilin Li, Yunrui Ru, Di Sun, Cong Liu, Zongyun Li, Weijie Liu. Dynamic changes in community structure and degradation performance of a bacterial consortium MMBC-1 during the subculturing revival reveal the potential decomposers of lignocellulose. Bioresources and Bioprocessing, 2022, 9(1): 110 DOI:10.1186/s40643-022-00601-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bomble YJ, Lin CY, Amore A, Wei H, Holwerda EK, Ciesielski PN, Donohoe BS, Decker SR, Lynd LR, Himmel ME. Lignocellulose deconstruction in the biosphere. Curr Opin Chem Biol, 2017, 41: 61-70.

[2]

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010, 7(5): 335-336.

[3]

Carlos C, Fan H, Currie CR. Substrate shift reveals roles for members of bacterial consortia in degradation of plant cell wall polymers. Front Microbiol, 2018, 9: 364.

[4]

Carpita NC, McCann MC. Redesigning plant cell walls for the biomass-based bioeconomy. J Biol Chem, 2020, 295(44): 15144-15157.

[5]

Cerisy T, Souterre T, Torres-Romero I, Boutard M, Dubois I, Patrouix J, Labadie K, Berrabah W, Salanoubat M, Doring V, Tolonen AC. Evolution of a biomass-fermenting bacterium to resist lignin phenolics. Appl Environ Microbiol, 2017, 83(11): e00289-e317.

[6]

Cortes-Tolalpa L, Jimenez DJ, de Lima Brossi MJ, Salles JF, van Elsas JD. Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity. Appl Microbiol Biotechnol, 2016, 100(17): 7713-7725.

[7]

Cortes-Tolalpa L, Norder J, van Elsas JD, Falcao Salles J. Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate. Appl Microbiol Biotechnol, 2018, 102(6): 2913-2927.

[8]

Diaz-Garcia L, Bugg TDH, Jimenez DJ. Exploring the lignin catabolism potential of soil-derived lignocellulolytic microbial consortia by a gene-centric metagenomic approach. Microbiol Ecol, 2020, 80(4): 885-896.

[9]

Diaz-Garcia L, Huang S, Sproer C, Sierra-Ramirez R, Bunk B, Overmann J, Jimenez DJ. Dilution-to-stimulation/extinction method: a combination enrichment strategy to develop a minimal and versatile lignocellulolytic bacterial consortium. Appl Environ Microbiol, 2021, 87(2): e02427-e2520.

[10]

Ebringerová A, Heinze T. Xylan and xylan derivatives—biopolymers with valuable properties, 1 Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun, 2000, 21(9): 542-556.

[11]

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013, 10(10): 996-998.

[12]

Gilmore SP, Lankiewicz TS, Wilken SE, Brown JL, Sexton JA, Henske JK, Theodorou MK, Valentine DL, O'Malley MA. Top-down enrichment guides in formation of synthetic microbial consortia for biomass degradation. ACS Synth Biol, 2019, 8(9): 2174-2185.

[13]

Jin L, Huang Y, Yang S, Wu D, Li C, Deng W, Zhao K, He Y, Li B, Zhang G, Xiong Y, Wei R, Li G, Wu H, Zhang H, Zou L. Diet, habitat environment and lifestyle conversion affect the gut microbiomes of giant pandas. Sci Total Environ, 2021, 770.

[14]

Karuppiah V, Zhixiang L, Liu H, Vallikkannu M, Chen J. Co-culture of Vel1-overexpressed Trichoderma asperellum and Bacillus amyloliquefaciens: an eco-friendly strategy to hydrolyze the lignocellulose biomass in soil to enrich the soil fertility, plant growth and disease resistance. Microb Cell Fact, 2021, 20(1): 57.

[15]

Lemos LN, Pereira RV, Quaggio RB, Martins LF, Moura LMS, da Silva AR, Antunes LP, da Silva AM, Setubal JC. Genome-centric analysis of a thermophilic and cellulolytic bacterial consortium derived from composting. Front Microbiol, 2017, 8: 644.

[16]

Li J, Tang X, Zhao J, Chen S, Wang S, Shao T. Improvement of fermentation quality and cellulose convertibility of Napier grass silage by inoculation of cellulolytic bacteria from Tibetan yak (Bos grunniens). J Appl Microbiol, 2021, 130(6): 1857-1867.

[17]

Li JF, Wang SR, Zhao J, Dong ZH, Shao T. Gut microbiota of Ostrinia nubilalis larvae degrade maize cellulose. Front Microbiol, 2022, 13.

[18]

Liu L, Yang J, Yang Y, Luo L, Wang R, Zhang Y, Yuan H. Consolidated bioprocessing performance of bacterial consortium EMSD5 on hemicellulose for isopropanol production. Bioresour Technol, 2019, 292.

[19]

Liu J, Liu C, Qiao S, Dong Z, Sun D, Zhu J, Liu W. One-step fermentation for producing xylo-oligosaccharides from wheat bran by recombinant Escherichia coli containing an alkaline xylanase. BMC Biotechnol, 2022, 22(1): 6.

[20]

Lopes AM, Ferreira Filho EX, Moreira LRS. An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol, 2018, 125(3): 632-645.

[21]

McClure R, Naylor D, Farris Y, Davison M, Fansler SJ, Hofmockel KS, Jansson JK. Development and analysis of a stable, reduced complexity model soil microbiome. Front Microbiol, 2020, 11: 1987.

[22]

Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31(3): 426-428.

[23]

Moro Cantu-Jungles T, Nascimento do GE, Zhang X, Iacomini M, Cordeiro LMC, Hamaker BR. Soluble xyloglucan generates bigger bacterial community shifts than pectic polymers during in vitro fecal fermentation. Carbohydr Polym, 2019, 206: 389-395.

[24]

Ozkaya O, Xavier KB, Dionisio F, Balbontin R. Maintenance of microbial cooperation mediated by public goods in single- and multiple-trait scenarios. J Bacteriol, 2017, 199(22): e00297-e317.

[25]

Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M. Bacterial diversity at different stages of the composting process. BMC Microbiol, 2010, 10: 94.

[26]

Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL, Henske JK, Swift CL, Salamov A, Barry K, Grigoriev IV, Theodorou MK, Valentine DL, O’Malley MA. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat Microbiol, 2021, 6(4): 499-511.

[27]

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res, 2007, 35(21): 7188-7196.

[28]

Qian X, Chen L, Sui Y, Chen C, Zhang W, Zhou J, Dong W, Jiang M, Xin F, Ochsenreither K. Biotechnological potential and applications of microbial consortia. Biotechnol Adv, 2020, 40.

[29]

Qiao C, Ryan Penton C, Liu C, Shen Z, Ou Y, Liu Z, Xu X, Li R, Shen Q. Key extracellular enzymes triggered high-efficiency composting associated with bacterial community succession. Bioresour Technol, 2019, 288.

[30]

Shahab RL, Brethauer S, Davey MP, Smith AG, Vignolini S, Luterbacher JS, Studer MH. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science, 2020, 369(6507): 1214.

[31]

Sheng P, Huang J, Zhang Z, Wang D, Tian X, Ding J. Construction and characterization of a cellulolytic consortium enriched from the hindgut of Holotrichia parallela larvae. Int J Mol Sci, 2016, 17(10): 1646.

[32]

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of structural carbohydrates and lignin in biomass—NREL/TP-510–42618. Lab Anal Proc, 2008, 1617(1): 1-6.

[33]

Suksong W, Kongjan P, Prasertsan P, OT S. Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion. Bioresour Technol, 2019, 291: 121851.

[34]

Tuncil YE, Xiao Y, Porter NT, Reuhs BL, Martens EC, Hamaker BR. Reciprocal prioritization to dietary glycans by gut bacteria in a competitive environment promotes stable coexistence. Mbio, 2017, 8(5): e01068-e1117.

[35]

Vahidi MF, Gharechahi J, Behmanesh M, Ding XZ, Han JL, Hosseini Salekdeh G. Diversity of microbes colonizing forages of varying lignocellulose properties in the sheep rumen. PeerJ, 2021, 9.

[36]

Wang RN, Yang JS, Jang JM, Liu JW, Zhang Y, Liu L, Yuan HL. Efficient ferulic acid and xylo-oligosaccharides production by a novel multi-modular bifunctional xylanase/feruloyl esterase using agricultural residues as substrates. Bioresour Technol, 2020, 297.

[37]

Wang XL, Zhou JJ, Shen JT, Zheng YF, Sun YQ, Xiu ZL. Sequential fed-batch fermentation of 1,3-propanediol from glycerol by Clostridium butyricum DL07. Appl Microbiol Biotechnol, 2020, 104(21): 9179-9191.

[38]

Wang Y, Elzenga T, van Elsas JD. Effect of culture conditions on the performance of lignocellulose-degrading synthetic microbial consortia. Appl Microbiol Biotechnol, 2021, 105(20): 7981-7995.

[39]

Yang L, Xi Y, Luo XY, Ni H, Li HH. Preparation of peroxidase and phenolics using discarded sweet potato old stems. Sci Rep, 2019, 9(1): 3769.

[40]

Yin YS, Fan B, Liu W, Ren RR, Chen HH, Bai SF, Zhu LY, Sun G, Yang YS, Wang X. Investigation into the stability and culturability of Chinese enterotypes. Sci Rep, 2017, 7(1): 7947.

[41]

Zhang D, Wang Y, Zheng D, Guo P, Cheng W, Cui Z. New combination of xylanolytic bacteria isolated from the lignocellulose degradation microbial consortium XDC-2 with enhanced xylanase activity. Bioresour Technol, 2016, 221: 686-690.

[42]

Zhang W, Wang W, Wang J, Shen G, Yuan Y, Yan L, Tang H, Wang W. Isolation and characterization of a novel laccase for lignin degradation, LacZ1. Appl Environ Microbiol, 2021, 87(23

[43]

Zheng G, Yin T, Lu Z, Boboua SYB, Li J, Zhou W. Degradation of rice straw at low temperature using a novel microbial consortium LTF-27 with efficient ability. Bioresour Technol, 2020, 304.

Funding

Natural Science Foundation of Jiangsu Province(BK20210920)

Jiangsu Agricultural Science and Technology Independent Innovation Fund(CX(22)3125)

Natural Science Research of Jiangsu Higher Education Institutions of China(20KJB180001)

Postgraduate Research & Practice Innovation Program of Jiangsu Normal university(2022XKT0928)

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/