RETRACTED ARTICLE: Mutagenesis combined with fermentation optimization to enhance gibberellic acid GA3 yield in Fusarium fujikuroi

Ya-Wen Li , Cai-Ling Yang , Hui Peng , Zhi-Kui Nie , Tian-Qiong Shi , He Huang

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 106

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 106 DOI: 10.1186/s40643-022-00595-3
Research

RETRACTED ARTICLE: Mutagenesis combined with fermentation optimization to enhance gibberellic acid GA3 yield in Fusarium fujikuroi

Author information +
History +
PDF

Abstract

Gibberellic acid (GA3) is a plant growth hormone that plays an important role in the production of crops, fruits, and vegetables with a wide market share. Due to intrinsic advantages, liquid fermentation of Fusarium fujikuroi has become the sole method for industrial GA3 production, but the broader application of GA3 is hindered by low titer. In this study, we combined atmospheric and room-temperature plasma (ARTP) with ketoconazole-based screening to obtain the mutant strain 3-6-1 with high yield of GA3. Subsequently, the medium composition and fermentation parameters were systematically optimized to increase the titer of GA3, resulting in a 2.5-fold increase compared with the titer obtained under the initial conditions. Finally, considering that the strain is prone to substrate inhibition and glucose repression, a new strategy of fed-batch fermentation was adopted to increase the titer of GA3 to 575.13 mg/L, which was 13.86% higher than the control. The strategy of random mutagenesis combined with selection and fermentation optimization developed in this study provides a basis for subsequent research on the industrial production of GA3.

Keywords

ARTP mutagenesis / Fermentation optimization / Fusarium fujikuroi / Gibberellic acid / Plant growth hormone

Cite this article

Download citation ▾
Ya-Wen Li, Cai-Ling Yang, Hui Peng, Zhi-Kui Nie, Tian-Qiong Shi, He Huang. RETRACTED ARTICLE: Mutagenesis combined with fermentation optimization to enhance gibberellic acid GA3 yield in Fusarium fujikuroi. Bioresources and Bioprocessing, 2022, 9(1): 106 DOI:10.1186/s40643-022-00595-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anand S, Srivastava P. Comparative study for the production of mycophenolic acid using penicillium brevicompactum in batch, fed-batch and continuous fermentation process. Biointerface Res Appl Chem, 2022, 12(1): 366-376.

[2]

Bai J, Liu FL, Li SQ, Li P, Chang C, Fang SQ. Solid-state fermentation process for gibberellin production using enzymatic hydrolysate corn stalks. BioResources, 2020, 15(1): 429-443.

[3]

Basiacik Karakoc S, Aksoz N. Optimization of carbon-nitrogen ratio for production of gibberellic acid by pseudomonas sp. Pol J Microbiol, 2004, 53(2): 117-120.

[4]

Boemke C, Tudzynski B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochem, 2009, 70(15–16): 1876-1893.

[5]

Borgers M, Van den Bossche H, De Brabander M. The mechanism of action of the new antimycotic ketoconazole. Am J Med, 1983, 74(1B): 2-8.

[6]

Camara MC, Vandenberghe LPS, Rodrigues C, de Oliveira J, Faulds C, Bertrand E, Soccol CR. Current advances in gibberellic acid (GA (3)) production, patented technologies and potential applications. Planta, 2018, 248(5): 1049-1062.

[7]

Cihangir NF. Stimulation of the gibberellic acid synthesis by Aspergillus niger in submerged culture using a precursor. World J Microb Biot, 2002, 18(8): 727-729.

[8]

da Silva LRI, de Andrade CJ, de Oliveira D, Lerin LA. Solid-state fermentation in brewer’s spent grains by Fusariumfujikuroi for gibberellic acid production. Biointerface Res Appl Chem, 2021, 11(5): 13042-13052.

[9]

de Oliveira J, Rodrigues C, Vandenberghe LPS, Camara MC, Libardi N, Soccol CR. Gibberellic acid production by different fermentation systems using citric pulp as substrate/support. Biomed Res Int, 2017

[10]

Dil EA, Doustimotlagh AH, Javadian H, Asfaram A, Ghaedi M. Nano-sized Fe3O4@SiO2-molecular imprinted polymer as a sorbent for dispersive solid-phase microextraction of melatonin in the methanolic extract of portulaca oleracea, biological, and water samples. Talanta, 2021, 221.

[11]

Dilek Tepe H. Effect of gibberellic acid (GA(3)) addition on physiological parameters and metal uptake in Phaseolus vulgaris seedlings under cadmium and lead stress. Plant Biosyst, 2021

[12]

Fernandez-Martin R, Cerda-Olmedo E, Avalos J. Homologous recombination and allele replacement in transformants of Fusarium fujikuroi. Mol Gen Genet, 2000, 263(5): 838-845.

[13]

Gao XL, Liu EM, Yin YY, Yang LX, Huang QR, Chen S, Ho CT. Enhancing activities of salt-tolerant proteases secreted by Aspergillus oryzae using atmospheric and Room-Temperature plasma mutagenesis. J Agric Food Chem, 2020, 68(9): 2757-2764.

[14]

Gokdere M, Ates S. Extractive fermentation of gibberellic acid with free and immobilized Gibberella fujikuroi. Prep Biochem Biotechnol, 2014, 44(1): 80-89.

[15]

Han XS, Li L, Wei CX, Zhang J, Bao J. Facilitation of L-lactic acid fermentation by lignocellulose biomass rich in vitamin B compounds. J Agric Food Chem, 2019, 67(25): 7082-7086.

[16]

He R, Liu L, Jiang B, Zhai Q, Ma H. Preparation of antioxidant peptides by Bacillus Subtilis Liquid-state fermentation from rapeseed meal. J Chinese Int Food Sci Technol, 2013, 13(12): 12-20.

[17]

Hedden P, Sponsel V. A century of gibberellin research. J Plant Growth Regul, 2015, 34(4): 740-760.

[18]

Hedden P, Thomas SG. Gibberellin biosynthesis and its regulation. Biochem J, 2012, 444: 11-25.

[19]

Huang JQ, An YF, Zabed HM, Ravikumar Y, Zhao M, Yun JH, Zhang GY, Zhang YF, Li XL, Qi XH. Enhanced biosynthesis of (D)-arabitol by metschnikowia reukaufii through optimizing medium composition and fermentation conditions. Appl Biochem Biotechnol, 2022, 194(7): 3119-3135.

[20]

Ji XJ, Huang H, Du J, Zhu JG, Ren LJ, Li S, Nie ZK. Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresour Technol, 2009, 100(21): 5214-5218.

[21]

Kai K, Kasa S, Sakamoto M, Aoki N, Watabe G, Yuasa T, Iwaya-Inoue M, Ishibashi Y. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination. Plant Signal Behav, 2016

[22]

Keswani C, Singh SP, Garcia-Estrada C, Mezaache-Aichour S, Glare TR, Borriss R, Rajput VD, Minkina TM, Ortiz A, Sansinenea E. Biosynthesis and beneficial effects of microbial gibberellins on crops for sustainable agriculture. J Appl Microbiol, 2022, 132(3): 1597-1615.

[23]

Kildegaard KR, Arnesen JA, Adiego-Perez B, Rago D, Kristensen M, Klitgaard AK, Hansen EH, Hansen J, Borodina I. Tailored biosynthesis of gibberellin plant hormones in yeast. Metab Eng, 2021, 66: 1-11.

[24]

Kodym A, Afza R. Physical and chemical mutagenesis. Methods Mol Biol, 2003, 236: 189-204.

[25]

Koselny K, Mutlu N, Minard AY, Kumar A, Krysan DJ, Wellington M. A genome-wide screen of deletion mutants in the Filamentous saccharomyces cerevisiae background identifies ergosterol as a direct trigger of macrophage pyroptosis. Mbio, 2018, 9(4): e01204-e1218.

[26]

Lale G, Gadre R. Enhanced production of gibberellin A(4) (GA(4)) by a mutant of Gibberella fujikuroi in wheat gluten medium. J Ind Microbiol Biotechnol, 2010, 37(3): 297-306.

[27]

Li ZP, Meng T, Hang W, Cao XY, Ni H, Shi YY, Li QB, Xiong YY, He N. Regulation of glucose and glycerol for production of docosahexaenoic acid in Schizochytrium limacinum SR21 with metabolomics analysis. Algal Res, 2021, 58.

[28]

Lu Y, Wang LY, Ma K, Li G, Zhang C, Zhao HX, Lai QH, Li HP, Xing XH. Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochem Eng J, 2011, 55(1): 17-22.

[29]

MacMillan J. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul, 2001, 20(4): 387-442.

[30]

Mander LN. Twenty years of gibberellin research. Nat Prod Rep, 2003, 20(1): 49-69.

[31]

Meleigy SA, Khalaf MA. Biosynthesis of gibberellic acid from milk permeate in repeated batch operation by a mutant Fusarium moniliforme cells immobilized on loofa sponge. Bioresour Technol, 2009, 100(1): 374-379.

[32]

Michielse CB, Pfannmuller A, Macios M, Rengers P, Dzikowska A, Tudzynski B. The interplay between the GATA transcription factors AreA, the global nitrogen regulator and AreB in Fusarium fujikuroi. Mol Microbiol, 2014, 91(3): 472-493.

[33]

Moszczynska E, Matkowski K, Plaskowska E, Biesiada A. Fungi assemblages of the phyllosphere of eastern purple coneflower (Echinacea purpurea (L.) Moench.) fertilized with ammonium sulphate. Acta Sci Pol Hortorum Cultus, 2011, 10(4): 89-98.

[34]

Nkhata SG, Ayua E, Kamau EH, Shingiro JB. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr, 2018, 6(8): 2446-2458.

[35]

Patil SA, Surwase SN, Jadhav SB, adhav JP,. Optimization of medium using response surface methodology for L-DOPA production by Pseudomonas sp SSA. Biochem Eng J, 2013, 74: 36-45.

[36]

Peng XL, Zhao WJ, Wang YS, Dai KL, Cen YK, Liu ZQ, Zheng YG. Enhancement of gibberellic acid production from Fusarium fujikuroi by mutation breeding and glycerol addition. 3 Biotech, 2020, 10(7): 1-10.

[37]

Piombo E, Bosio P, Acquadro A, Abbruscato P, Spadaro D. Different Phenotypes, similar genomes: three newly sequenced Fusarium fujikuroi strains induce different symptoms in rice depending on temperature. Phytopathology, 2020, 110(3): 656-665.

[38]

Rios-Iribe EY, Flores-Cotera LB, Chavira MMG, Gonzalez-Alatorre G, Escamilla-Silva EM. Inductive effect produced by a mixture of carbon source in the production of gibberellic acid by Gibberella fujikuroi. World J Microbiol Biotechnol, 2011, 27(6): 1499-1505.

[39]

Rodrigues C, Vandenberghe LPD, de Oliveira J, Soccol CR. New perspectives of gibberellic acid production: a review. Crit Rev Biotechnol, 2012, 32(3): 263-273.

[40]

Rodriguez-Ortiz R, Mehta BJ, Avalos J, Limon MC. Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi. Appl Microbiol Biotechnol, 2010, 85(6): 1991-2000.

[41]

Salazar-Cerezo S, Martinez-Montiel N, Garcia-Sanchez J, Perez-y-Terron R, Martinez-Contreras RD. Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria. Microbiol Res, 2018, 208: 85-98.

[42]

Shi TQ, Liu GN, Ji RY, Shi K, Song P, Ren LJ, Huang H, Ji XJ. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol, 2017, 101(20): 7435-7443.

[43]

Shi TQ, Peng H, Zeng SY, Ji RY, Shi K, Huang H, Ji XJ. Microbial production of plant hormones: opportunities and challenges. Bioengineered, 2017, 8(2): 124-128.

[44]

Shukla R, Srivastava AK, Chand S. Bioprocess strategies and recovery processes in gibberellic acid fermentation. Biotechnol and Bioprocess Eng, 2003, 8(5): 269-278.

[45]

Shukla R, Chand S, Srivastava AK. Improvement of gibberellic acid production using a model based fed-batch cultivation of Gibberella fujikuroi. Process Biochem, 2005, 40(6): 2045-2050.

[46]

Song DM, Gao ZD, Zhao LQ, Wang XX, Xu HJ, Bai YL, Zhang XM, Linder MB, Feng H, Qiao M. High-yield fermentation and a novel heat-precipitation purification method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris. Protein Expr Purif, 2016, 128: 22-28.

[47]

Songnaka N, Nisoa M, Atipairin A, Wanganuttara T, Chinnawong T. Enhanced antibacterial activity of Brevibacillus sp SPR19 by atmospheric and room temperature plasma mutagenesis (ARTP). Sci Pharm, 2022

[48]

Tsavkelova EA. The biosynthesis of gibberellic acids by the transformants of orchid-associated Fusarium oxysporum. Mycol Prog, 2016, 15(2): 1-8.

[49]

Uthandi S, Karthikeyan S, Sabarinathan KG. Gibberellic acid production by Fusarium fujikuroi SG2. J Sci Ind Res, 2010, 69(3): 211-214.

[50]

Wang W, Li JL, Huang WW, Li ZH, Zeng BQ. Screening and identification of high gibberellin-producing strain from terbinafine resistant mutants. Microbiol China, 2014, 41(9): 1837-1842.

[51]

Wang Q, Feng LR, Luo W, Li HG, Zhou Y, Yu XB. Effect of Inoculation Process on Lycopene Production by Blakeslea trispora in a Stirred-tank reactor. Appl Biochem and Biotechnol, 2015, 175(2): 770-779.

[52]

Wang W, Wu Y, Li J, Yao Y. Enhancement of gibberellin acid production through dissolved oxygen regulation in batch fermentation. Mygosystema, 2017, 36(5): 611-617.

[53]

Wang BX, Si W, Wu YF, Zhang XQ, Wang SY, Wu CF, Lin HP, Yin LH. Research progress in biosynthesis and metabolism regulation of gibberellins in Gibberella fujikuroi. Chin J Biotechnol, 2020, 36(2): 189-200.

[54]

Wang BX, Yin KN, Wu CF, Wang L, Yin LH, Lin HP. Medium Optimization for GA4 Production by Gibberella fujikuroi using response surface methodology. Fermentation, 2022, 8(5): 230.

[55]

Wang JQ, Zhao J, Xia JY. gamma-PGA fermentation by Bacillus subtilis PG-001 with glucose feedback control pH-stat strategy. Appl Biochem Biotechnol, 2022, 194(5): 1871-1880.

[56]

Wang HN, Ke X, Zhou JP, Liu ZQ, Zheng YG. Recent advances in metabolic regulation and bioengineering of gibberellic acid biosynthesis in Fusarium fujikuroi. World J Microbiol Biotechnol, 2022, 38(8): 1-16.

[57]

Yamayoshi I, Maisnier-Patin S, Roth JR. Selection-enhanced mutagenesis of lac genes is due to their coamplification with dinB encoding an error-prone DNA polymerase. Genetics, 2018, 208(3): 1009-1021.

[58]

Yan GL, Wen KR, Duan CQ. Enhancement of beta-Carotene Production by Over-Expression of HMG-CoA Reductase Coupled with Addition of Ergosterol Biosynthesis Inhibitors in Recombinant Saccharomyces cerevisiae. Curr Microbiol, 2012, 64(2): 159-163.

[59]

Yasuda H, Furukawa Y, Nishioka K, Sasaki M, Tsukune Y, Shirane S, Hattori N, Ando M, Komatsu N. Vitamin B6 deficiency as a cause of polyneuropathy in POEMS syndrome: rapid recovery with supplementation in two cases. Hematology, 2022, 27(1): 463-468.

[60]

Yoshimi A, Miyazawa K, Abe K. Cell wall structure and biogenesis in Aspergillus species. Biosci Biotechnol and Biochem, 2016, 80(9): 1700-1711.

[61]

Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, Bao CY. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol, 2014, 98(12): 5387-5396.

[62]

Zhang X, Zhang C, Zhou QQ, Zhang XF, Wang LY, Chang HB, Li HP, Oda Y, Xing XH. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl Microbiol Biotechnol, 2015, 99(13): 5639-5646.

[63]

Zhang B, Lei Z, Liu ZQ, Zheng YG. Improvement of gibberellin production by a newly isolated Fusarium fujikuroi mutant. J Appl Microbiol, 2020, 129(6): 1620-1632.

[64]

Zhou HY, Wu WJ, Niu K, Xu YY, Liu ZQ, Zheng YG. Enhanced L-methionine production by genetically engineered Escherichia coli through fermentation optimization. 3 Biotech, 2019, 9(3): 1-11.

Funding

Natural Science Foundation of Jiangsu Province(BK20210573)

the National key research and development program of China(2021YFC2104300)

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/