Production of xylose through enzymatic hydrolysis of glucuronoarabinoxylan from brewers’ spent grain
Lilia C. Rojas-Pérez , Paulo C. Narváez-Rincón , M. Angélica M. Rocha , Elisabete Coelho , Manuel A. Coimbra
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 105
Production of xylose through enzymatic hydrolysis of glucuronoarabinoxylan from brewers’ spent grain
Xylose is an abundant bioresource for obtaining diverse chemicals and added-value products. The production of xylose from green alternatives like enzymatic hydrolysis is an important step in a biorefinery context. This research evaluated the synergism among four classes of hydrolytic purified enzymes—endo-1,4-β-xylanase, α-l-arabinofuranosidase, β-xylosidase, and α-d-glucuronidase—over hydrolysis of glucuronoarabinoxylan (GAX) obtained from brewers’ spent grain (BSG) after alkaline extraction and ethanol precipitation. First, monosaccharides, uronic acids and glycosidic-linkages of alkaline extracted GAX fraction from BSG were characterized, after that different strategies based on the addition of one or two families of enzymes—endo-1,4-β-xylanase (GH10 and GH11) and α-l-arabinofuranosidase (GH43 and GH51)—cooperating with one β-xylosidase (GH43) and one α-d-glucuronidase (GH67) into enzymatic hydrolysis were assessed to obtain the best yield of xylose. The xylose release was monitored over time in the first 90 min and after a prolonged reaction up to 48 h of reaction. The highest yield of xylose was 63.6% (48 h, 40 ℃, pH 5.5), using a mixture of all enzymes devoid of α-l-arabinofuranosidase (GH43) family. These results highlight the importance of GH51 arabinofuranosidase debranching enzyme to allow a higher cleavage of the xylan backbone of GAX from BSG and their synergy with 2 endo-1,4-β-xylanase (GH10 and GH11), one β-xylosidase (GH43) and the inclusion of one α-d-glucuronidase (GH67) in the reaction system. Therefore, this study provides an environmentally friendly process to produce xylose from BSG through utilization of enzymes as catalysts.
Brewers’ spent grain / Glucuronoarabinoxylan / Arabinoxylan / Xylan saccharification / Synergism / Xylanolytic enzymes / Enzymatic hemicellulose hydrolysis
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Coimbra MA, Delgadillo I, Waldron KW, Selvendran RR (1996) Isolation and analysis of cell wall polymers from olive pulp. Anal Biochem 54(2):484–489 |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
/
| 〈 |
|
〉 |