An accessory enzymatic system of cellulase for simultaneous saccharification and co-fermentation

Han Liu , Xuxin Wang , Yanping Liu , Zhuoran Kang , Jiaqi Lu , Yutong Ye , Zhipeng Wang , Xinshu Zhuang , Shen Tian

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 101

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 101 DOI: 10.1186/s40643-022-00585-5
Research

An accessory enzymatic system of cellulase for simultaneous saccharification and co-fermentation

Author information +
History +
PDF

Abstract

1.

A replicative and integrative Di-CRISPR platform was promising in generating an efficient xylose-utilizing Saccharomyces cerevisiae strain.

2.

The functional activity of chimeric xylanases was demonstrated in direct hemicellulose-to-ethanol conversion.

3.

The feasibility of an accessory enzymatic system of cellulase for simultaneous saccharification and co-fermentation from pretreated C4 grass was evaluated.

Keywords

Hemicellulosome / Simultaneous saccharification and co-fermentation / Cellulosic ethanol / Consolidated bioprocessing / Saccharomyces cerevisiae

Cite this article

Download citation ▾
Han Liu, Xuxin Wang, Yanping Liu, Zhuoran Kang, Jiaqi Lu, Yutong Ye, Zhipeng Wang, Xinshu Zhuang, Shen Tian. An accessory enzymatic system of cellulase for simultaneous saccharification and co-fermentation. Bioresources and Bioprocessing, 2022, 9(1): 101 DOI:10.1186/s40643-022-00585-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhattacharya AS, Bhattacharya A, Pletschke BI. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett, 2015, 37(6): 1117-1129.

[2]

Goyal G, Tsai S-L, Madan B, Dasilva NA, Chen W. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact, 2011

[3]

Hoang Nguyen Tran P, Ko JK, Gong G, Um Y, Lee S-M. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. Biotechnol Biofuel, 2020

[4]

Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microb, 2004, 70(9): 5507-5514.

[5]

Liu C-G, Xiao Y, Xia X-X, Zhao X-Q, Peng L, Srinophakun P, . Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv, 2019, 37(3): 491-504.

[6]

Nanmori T, Watanabe T, Shinke R, Kohno A, Kawamura Y. Purification and properties of thermostable xylanase and beta-xylosidase produced by a newly isolated bacillus-stearothermophilus strain. J Bacteriol, 1990, 172(12): 6669-6672.

[7]

Park H, Jeong D, Shin M, Kwak S, Oh EJ, Ko JK, . Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol. Appl Microbiol Biot, 2020, 104(8): 3245-3252.

[8]

Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biot, 2005, 67(5): 577-591.

[9]

Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol, 2012, 158(4): 203-210.

[10]

Shi S, Liang Y, Zhang MM, Ang EL, Zhao H. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng, 2016, 33: 19-27.

[11]

Smith SP, Bayer EA. Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struc Biol, 2013, 23(5): 686-694.

[12]

Sun J, Wen F, Si T, Xu J-H, Zhao H. Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome. Appl Environ Microb, 2012, 78(11): 3837-3845.

[13]

Tian S, Du JL, Bai ZS, He J, Yang XS. Design and construction of synthetic cellulosome with three adaptor scaffoldins for cellulosic ethanol production from steam-exploded corn stover. Cellulose, 2019, 26(15): 8401-8415.

[14]

Tsai S-L, Oh J, Singh S, Chen R, Chen W. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microb, 2009, 75(19): 6087-6093.

[15]

Tsai S-L, Dasilva NA, Chen W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. Acs Synth Biol, 2013, 2(1): 14-21.

[16]

Tubeileh A, Rennie TJ, Goss MJ. A review on biomass production from C-4 grasses: yield and quality for end-use. Curr Opin Plant Biol, 2016, 31: 172-180.

[17]

Wang Z, Lv Z, Du J, Mo C, Yang X, Tian S. Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover. Bioresour Technol, 2014, 166: 282-287.

[18]

Wang C, Li H, Xu L, Shen Y, Hou J, Bao X. Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae. Chin J Biotechnol, 2018, 34(10): 1543-1555.

[19]

Wen F, Sun J, Zhao H. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microb, 2010, 76(4): 1251-1260.

[20]

Wood TM, Bhat KM. Methods for measuring cellulase activities. Method Enzymol, 1988, 160: 87-112.

[21]

Zhang YY, Wang CY, Wang LL, Yang RX, Hou PL, Liu JH. Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts. J Ind Microbiol Biotechnol, 2017, 44(3): 453-464.

Funding

National Natural Science Foundation of China(31971202)

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/