Two strategies to improve the supply of PKS extender units for ansamitocin P-3 biosynthesis by CRISPR–Cas9

Siyu Guo , Xueyuan Sun , Ruihua Li , Tianyao Zhang , Fengxian Hu , Feng Liu , Qiang Hua

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 90

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 90 DOI: 10.1186/s40643-022-00583-7
Research

Two strategies to improve the supply of PKS extender units for ansamitocin P-3 biosynthesis by CRISPR–Cas9

Author information +
History +
PDF

Abstract

Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum. To solve this problem, a tailor-made pCRISPR–Cas9apre system was developed from pCRISPR–Cas9 for increasing the accessibility of A. pretiosum to genetic engineering, by optimizing cas9 for the host codon preference and replacing pSG5 with pIJ101 replicon. Using pCRISPR–Cas9apre, five large-size gene clusters for putative competition pathway were individually deleted with homology-directed repair (HDR) and their effects on AP-3 yield were investigated. Especially, inactivation of T1PKS-15 increased AP-3 production by 27%, which was most likely due to the improved intracellular triacylglycerol (TAG) pool for essential precursor supply of AP-3 biosynthesis. To enhance a “glycolate” extender unit, two combined bidirectional promoters (BDPs) ermEp-kasOp and j23119p-kasOp were knocked into asm12-asm13 spacer in the center region of gene cluster, respectively, by pCRISPR–Cas9apre. It is shown that in the two engineered strains BDP-ek and BDP-jk, the gene transcription levels of asm13-17 were significantly upregulated to improve the methoxymalonyl-acyl carrier protein (MM-ACP) biosynthetic pathway and part of the post-PKS pathway. The AP-3 yields of BDP-ek and BDP-jk were finally increased by 30% and 50% compared to the parent strain L40. Both CRISPR–Cas9-mediated engineering strategies employed in this study contributed to the availability of AP-3 PKS extender units and paved the way for further metabolic engineering of ansamitocin overproduction.

Keywords

Actinosynnema pretiosum / CRISPR–Cas9 / Bidirectional promoters / Ansamitocin P-3 (AP-3) / Extender unit

Cite this article

Download citation ▾
Siyu Guo, Xueyuan Sun, Ruihua Li, Tianyao Zhang, Fengxian Hu, Feng Liu, Qiang Hua. Two strategies to improve the supply of PKS extender units for ansamitocin P-3 biosynthesis by CRISPR–Cas9. Bioresources and Bioprocessing, 2022, 9(1): 90 DOI:10.1186/s40643-022-00583-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alberti F, Corre C. Editing streptomycete genomes in the CRISPR/Cas9 age. Nat Prod Rep, 2019, 36: 1237-1248.

[2]

Alvarez H, Steinbüchel A. Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol, 2002, 60: 367-376.

[3]

An Z, Tao H, Wang Y, Xia B, Zou Y, Fu S, Fang F, Sun X, Huang R, Xia Y, Deng Z, Liu R, Liu T. Increasing the heterologous production of spinosad in Streptomyces albus J1074 by regulating biosynthesis of its polyketide skeleton. Synth Syst Biotechnol, 2021, 6: 292-301.

[4]

Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H. Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol, 2008, 74: 2573-2582.

[5]

Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res, 1999, 27: 49-54.

[6]

Bérdy J. Bioactive microbial metabolites. J Antibiot, 2005, 58: 1-26.

[7]

Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot, 2012, 65: 385-395.

[8]

Bilyk O, Luzhetskyy A. Metabolic engineering of natural product biosynthesis in actinobacteria. Curr Opin Biotechnol, 2016, 42: 98-107.

[9]

Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res, 2019, 47: W81-W87.

[10]

Chan YA, Podevels AM, Kevany BM, Thomas MG. Biosynthesis of polyketide synthase extender units. Nat Prod Rep, 2009, 26: 90-114.

[11]

Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol, 2015, 4: 723-728.

[12]

Ding L, Franke J, Hertweck C. Divergolide congeners illuminate alternative reaction channels for ansamycin diversification. Org Biomol Chem, 2015, 13: 1618-1623.

[13]

Du ZQ, Zhong JJ. Rational approach to improve ansamitocin P-3 production by integrating pathway engineering and substrate feeding in Actinosynnema pretiosum. Biotechnol Bioeng, 2018, 115: 2456-2466.

[14]

Du ZQ, Zhang Y, Qian ZG, Xiao H, Zhong JJ. Combination of traditional mutation and metabolic engineering to enhance ansamitocin P-3 production in Actinosynnema pretiosum. Biotechnol Bioeng, 2017, 114: 2794-2806.

[15]

Fan Y, Hu F, Wei L, Bai L, Hua Q. Effects of modulation of pentose-phosphate pathway on biosynthesis of ansamitocins in Actinosynnema pretiosum. J Biotechnol, 2016, 230: 3-10.

[16]

Fan Y, Zhao M, Wei L, Hu F, Imanaka T, Bai L, Hua Q. Enhancement of UDPG synthetic pathway improves ansamitocin production in Actinosynnem pretiosum. Appl Microbiol Biotechnol, 2016, 100: 2651-2662.

[17]

Genilloud O. Actinomycetes: still a source of novel antibiotics. Nat Prod Rep, 2017, 34: 1203-1232.

[18]

Gomma AE, Lee SK, Sun SM, Yang SH, Chung G. Improvement in oil production by increasing malonyl-CoA and glycerol-3-phosphate pools in Scenedesmus quadricauda. Indian J Microbiol, 2015, 55: 447-455.

[19]

Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics, 2014, 30: 2811-2812.

[20]

He Y. Two pHZ1358 derivative vectors for efficient gene knockout in Streptomyces. J Microbiol Biotechnol, 2010, 20: 678-682.

[21]

Hu X, Li X, Sheng Y, Wang H, Li X, Ou Y, Deng Z, Bai L, Kang Q. p-Aminophenylalanine involved in the biosynthesis of antitumor dnacin B1 for quinone moiety formation. Molecules, 2020, 25: 4186.

[22]

Huang H, Zheng G, Jiang W, Hu H, Lu Y. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin, 2015, 47: 231-243.

[23]

Hwang KS, Kim HU, Charusanti P, Palsson , Lee SY. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv, 2014, 32: 255-268.

[24]

Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L. Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology, 2017, 163: 1148-1155.

[25]

Kang Q, Shen Y, Bai L. Biosynthesis of 3,5-AHBA-derived natural products. Nat Prod Rep, 2012, 29: 243-263.

[26]

Kashyap AS, Fernandez-Rodriguez L, Zhao Y, Monaco G, Trefny MP, Yoshida N, Martin K, Sharma A, Olieric N, Shah P, Stanczak M, Kirchhammer N, Park S-M, Wieckowski S, Laubli H, Zagani R, Kasenda B, Steinmetz MO, Reinecker H-C, Zippelius A. GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses. Cell Rep, 2019, 28: 3367-3380.e8.

[27]

Kim SK, Han GH, Seong W, Kim H, Kim SW, Lee DH, Lee SG. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng, 2016, 38: 228-240.

[28]

Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab Eng, 2017, 40: 80-92.

[29]

Li L, Wei K, Liu X, Wu Y, Zheng G, Chen S, Jiang W, Lu Y. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metab Eng, 2019, 52: 153-167.

[30]

Li J, Guo S, Hua Q, Hu F. Improved AP-3 production through combined ARTP mutagenesis, fermentation optimization, and subsequent genome shuffling. Biotechnol Lett, 2021, 43: 1143-1154.

[31]

Liu Y, Ren CY, Wei WP, You D, Yin BC, Ye BC. A CRISPR-Cas9 strategy for activating the Saccharopolyspora erythraea erythromycin biosynthetic gene cluster with knock-in bidirectional promoters. ACS Synth Biol, 2019, 8: 1134-1143.

[32]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔCT method. Methods, 2001, 25: 402-408.

[33]

Lu C, Zhang X, Jiang M, Bai L. Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metab Eng, 2016, 35: 129-137.

[34]

Makitrynskyy R, Ostash B, Tsypik O, Rebets Y, Doud E, Meredith T, Luzhetskyy A, Bechthold A, Walker S, Fedorenko V. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol, 2013, 3.

[35]

Martin K, Müller P, Schreiner J, Prince SS, Lardinois D, Heinzelmann-Schwarz VA, Thommen DS, Zippelius A. The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol Immunother, 2014, 63: 925-938.

[36]

Milke L, Marienhagen J. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Appl Microbiol Biotechnol, 2020, 104: 6057-6065.

[37]

Mo S, Ban YH, Park JW, Yoo YJ, Yoon YJ. Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J Ind Microbiol Biotechnol, 2009, 36: 1473-1482.

[38]

Mo J, Wang S, Zhang W, Li C, Deng Z, Zhang L, Qu X. Efficient editing DNA regions with high sequence identity in actinomycetal genomes by a CRISPR-Cas9 system. Synth Syst Biotechnol, 2019, 4: 86-91.

[39]

Moss SJ, Bai L, Toelzer S, Carroll BJ, Mahmud T, Yu T-W, Floss HG. Identification of Asm19 as an acyltransferase attaching the biologically essential ester side chain of ansamitocins using N -Desmethyl-4,5-desepoxymaytansinol, not maytansinol, as its substrate. J Am Chem Soc, 2002, 124: 6544-6545.

[40]

Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod, 2016, 79: 629-661.

[41]

Ning X, Wang X, Wu Y, Kang Q, Bai L. Identification and engineering of post-PKS modification bottlenecks for ansamitocin P-3 titer improvement in Actinosynnemapretiosum subsp. pretiosum ATCC 31280. Biotechnol J, 2017, 12: 1700484.

[42]

Qiao L, Li X, Ke X, Chu J. A two-component system gene SACE_0101 regulates copper homeostasis in Saccharopolyspora erythraea. Bioresour Bioprocess, 2020, 7: 12.

[43]

Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM. Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea. J Ind Microbiol Biotechnol, 2006, 33: 600-609.

[44]

Ryu YG, Butler MJ, Chater KF, Lee KJ. Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol, 2006, 72: 7132-7139.

[45]

Salem SM, Weidenbach S, Rohr J. Two cooperative glycosyltransferases are responsible for the sugar diversity of saquayamycins isolated from Streptomyces sp. KY 40–1. ACS Chem Biol, 2017, 12: 2529-2534.

[46]

Spiteller P, Bai L, Shang G, Carroll BJ, Yu TW, Floss HG. The post-polyketide synthase modification steps in the biosynthesis of the antitumor agent ansamitocin by Actinosynnema pretiosum. J Am Chem Soc, 2003, 125: 14236-14237.

[47]

Stassi DL, Kakavas SJ, Reynolds KA, Gunawardana G, Swanson S, Zeidner D, Jackson M, Liu H, Buko A, Katz L. Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering. Proc Natl Acad Sci USA, 1998, 95: 7305-7309.

[48]

Staunton J, Weissman KJ. Polyketide biosynthesis: a millennium review. Nat Prod Rep, 2001, 18: 380-416.

[49]

Sun Y, He X, Liang J, Zhou X, Deng Z. Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. Appl Microbiol Biotechnol, 2009, 82: 303-310.

[50]

Tong L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. CMLS Cell Mol Life Sci, 2005, 62: 1784-1803.

[51]

Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol, 2015, 4: 1020-1029.

[52]

Tong Y, Weber T, Lee SY. CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep, 2019, 36: 1262-1280.

[53]

Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler E-M, Baumschlager A, Fischer JE, Hyden P, Wagner M, Baumann M, Borth N, Geier M, Ajikumar PK, Glieder A. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat Commun, 2018, 9: 3589.

[54]

Wang J, Hu X, Sun G, Li L, Jiang B, Li S, Bai L, Liu H, Yu L, Wu L. Genome-guided discovery of pretilactam from Actinosynnema pretiosum ATCC 31565. Molecules, 2019, 24: 2281.

[55]

Wang K, Zhao QW, Liu YF, Sun CF, Chen XA, Burchmore R, Burgess K, Li YQ, Mao XM. Multi-layer controls of Cas9 activity coupled with ATP synthase over-expression for efficient genome editing in Streptomyces. Front Bioeng Biotechnol, 2019, 7: 304.

[56]

Wang W, Li S, Li Z, Zhang J, Fan K, Tan G, Ai G, Lam SM, Shui G, Yang Z, Lu H, Jin P, Li Y, Chen X, Xia X, Liu X, Dannelly HK, Yang C, Yang Y, Zhang S, Alterovitz G, Xiang W, Zhang L. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces. Nat Biotechnol, 2020, 38: 76-83.

[57]

Wang X, Wang R, Kang Q, Bai L. The antitumor agent ansamitocin P-3 binds to cell division protein FtsZ in Actinosynnema pretiosum. Biomolecules, 2020, 10: 699.

[58]

Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L. Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Appl Microbiol Biotechnol, 2021, 105: 695-706.

[59]

Wenzel SC, Williamson RM, Grünanger C, Xu J, Gerth K, Martinez RA, Moss SJ, Carroll BJ, Grond S, Unkefer CJ, Müller R, Floss HG. On the biosynthetic origin of methoxymalonyl-acyl carrier protein, the substrate for incorporation of “glycolate” units into ansamitocin and soraphen A. J Am Chem Soc, 2006, 128: 14325-14336.

[60]

Wlodek A, Kendrew SG, Coates NJ, Hold A, Pogwizd J, Rudder S, Sheehan LS, Higginbotham SJ, Stanley-Smith AE, Warneck T, Nur-E-Alam M, Radzom M, Martin CJ, Overvoorde L, Samborskyy M, Alt S, Heine D, Carter GT, Graziani EI, Koehn FE, McDonald L, Alanine A, Rodríguez Sarmiento RM, Chao SK, Ratni H, Steward L, Norville IH, Sarkar-Tyson M, Moss SJ, Leadlay PF, Wilkinson B, Gregory MA. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat Commun, 2017, 8: 1206.

[61]

Wriessnegger T, Pichler H. Yeast metabolic engineering—targeting sterol metabolism and terpenoid formation. Prog Lipid Res, 2013, 52: 277-293.

[62]

Wu Y, Kang Q, Zhang L-L, Bai L. Subtilisin-involved morphology engineering for improved antibiotic production in actinomycetes. Biomolecules, 2020

[63]

Xiong W, Liang Y, Zheng Y. Enhancement and selective production of oligomycin through inactivation of avermectin’s starter unit in Streptomyces avermitilis. Biotechnol Lett, 2006, 28: 911-916.

[64]

Ye S, Enghiad B, Zhao H, Takano E. Fine-tuning the regulation of Cas9 expression levels for efficient CRISPR-Cas9 mediated recombination in Streptomyces. J Ind Microbiol Biotechnol, 2020, 47: 413-423.

[65]

Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci USA, 2002, 99: 7968-7973.

[66]

Zabala D, Braña AF, Flórez AB, Salas JA, Méndez C. Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. Metab Eng, 2013, 20: 187-197.

[67]

Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, Deng Z, Sun Y. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol, 2015, 99: 10575-10585.

[68]

Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, Yeo WL, Cobb RE, Enghiad B, Ang EL, Zhao H. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol, 2017, 13: 607-609.

[69]

Zhao P, Bai L, Ma J, Zeng Y, Li L, Zhang Y, Lu C, Dai H, Wu Z, Li Y, Wu X, Chen G, Hao X, Shen Y, Deng Z, Floss HG. Amide N-glycosylation by Asm25, an N-glycosyltransferase of ansamitocins. Chem Biol, 2008, 15: 863-874.

[70]

Zhao M, Fan Y, Wei L, Hu F, Hua Q. Effects of the methylmalonyl-CoA metabolic pathway on ansamitocin production in Actinosynnema pretiosum. Appl Biochem Biotechnol, 2017, 181: 1167-1178.

[71]

Zhong C, Zong G, Qian S, Liu M, Fu J, Zhang P, Li J, Cao G. Complete genome sequence of Actinosynnema pretiosum X47, an industrial strain that produces the antibiotic ansamitocin AP-3. Curr Microbiol, 2019, 76: 954-958.

[72]

Zhou L, Shen Y, Chen N, Li W, Lin H, Zhou Y. Targeted accumulation of selective anticancer depsipeptides by reconstructing the precursor supply in the neoantimycin biosynthetic pathway. Bioresour Bioprocess, 2021, 8: 43.

Funding

Shanghai Super Postdoctoral Program 2020

National Natural Science Fund for Young Scholars(32001035)

National Key R&D Program of China(2021YFC2102805)

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/