Ultrafine fully vulcanized natural rubber modified by graft-copolymerization with styrene and acrylonitrile monomers

Krittaphorn Longsiri , Phattarin Mora , Watcharapong Peeksuntiye , Chanchira Jubsilp , Kasinee Hemvichian , Panagiotis Karagiannidis , Sarawut Rimdusit

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 85

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 85 DOI: 10.1186/s40643-022-00577-5
Research

Ultrafine fully vulcanized natural rubber modified by graft-copolymerization with styrene and acrylonitrile monomers

Author information +
History +
PDF

Abstract

This research aims to modify ultrafine fully vulcanized powdered natural rubber (UFPNR) prepared by emulsion graft-copolymerization with styrene (St) and acrylonitrile (AN) monomers onto deproteinized natural rubber (DPNR). The effects of monomers content and St/AN weight ratio on grafting efficiency and thermal stability of the developed DPNR-g-(PS-co-PAN) were investigated. The results showed that grafting efficiency was enhanced up to 86% with monomers content 15 phr and weight ratio St:AN 80:20. The obtained DPNR-g-(PS-co-PAN) was radiated by an electron beam at various doses, followed by a spray drying process to produce UFPNR. The obtained modified UFPNR particles irradiated at dose up to 300 kGy were relatively spherical with a particle size of approximately 4.4 µm. Furthermore, the degradation temperature of 5wt% loss (Td5) of UFPNR was found in the range of 349–356 °C. The results revealed that the modified UFPNR is suitable as a toughening filler for a broader spectrum of polymers.

Keywords

Graft copolymer / DPNR-g-(PS-co-PAN) / UFPNR / Electron beam vulcanization / Spray drying

Cite this article

Download citation ▾
Krittaphorn Longsiri, Phattarin Mora, Watcharapong Peeksuntiye, Chanchira Jubsilp, Kasinee Hemvichian, Panagiotis Karagiannidis, Sarawut Rimdusit. Ultrafine fully vulcanized natural rubber modified by graft-copolymerization with styrene and acrylonitrile monomers. Bioresources and Bioprocessing, 2022, 9(1): 85 DOI:10.1186/s40643-022-00577-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akiba M, Hashim AS. Vulcanization and crosslinking in elastomers. Prog Polym Sci, 1997, 22(3): 475-521.

[2]

Angnanon S, Prasassarakich P, Hinchiranan N. Styrene/acrylonitrile graft natural rubber as compatibilizer in rubber blends. Polym-Plast Technol Eng, 2011, 50(11): 1170-1178.

[3]

Arayapranee W, Prasassarakich P, Rempel GL. Synthesis of graft copolymers from natural rubber using cumene hydroperoxide redox initiator. J Appl Polym Sci, 2002, 83(14): 2993-3001.

[4]

Azanam SH, Ong SK (2017) Natural rubber and its derivatives. In Elastomers.

[5]

Badawy S, Dessouki A. Cross-linked polyacrylonitrile prepared by radiation-induced polymerization technique. J Phys Chem B, 2003, 107(41): 11273-11279.

[6]

Bandzierz KS, Reuvekamp LAEM, Przybytniak G, Dierkes WK, Blume A, Bieliński DM. Effect of electron beam irradiation on structure and properties of styrene-butadiene rubber. Radiat Phys Chem, 2018, 149: 14-25.

[7]

Bee S-T, Sin LT, Ratnam CT, Chew WS, Rahmat AR. Enhancement effect of trimethylopropane trimethacrylate on electron beam irradiated acrylonitrile butadiene styrene (ABS). Polym Bull, 2018, 75(11): 5015-5037.

[8]

Burlant W, Neerman J, Serment V. γ-radiation of p-substituted polystyrenes. J Polym Sci, 1962, 58(166): 491-500.

[9]

Cabrera FC, Dognani G, Santos RJ, Agostini DLS, Cruz NC, Job AE. Surface modification of natural rubber by sulfur hexafluoride (SF6) plasma treatment: a new approach to improve mechanical and hydrophobic properties. J Coat Sci Technol, 2017, 3(3): 116-120.

[10]

Chueangchayaphan W, Tanrattanakul V, Chueangchayaphan N, Muangsap S, Borapak W. Synthesis and thermal properties of natural rubber grafted with poly(2-hydroxyethyl acrylate). J Polymer Res, 2017

[11]

Dawes K, Glover LC, Vroom DA (2007) The effects of electron beam and g-irradiation on polymeric materials. In (pp. 867–887).

[12]

Dinsmore HL, Smith DC. Analysis of natural and synthetic rubber by infrared spectroscopy. Anal Chem, 1948, 20(1): 11-24.

[13]

Dung T, Nhan N, Thuong N, Nghia P, Yamamoto Y, Kosugi K, Kawahara S, Thuy T. Modification of Vietnam natural rubber via graft copolymerization with styrene. J Braz Chem Soc, 2016

[14]

Dung TA, Nhan NT, Thuong NT, Viet DQ, Tung NH, Nghia PT, Kawahara S, Thuy TT. Dynamic mechanical properties of vietnam modified natural rubber via grafting with styrene. Int J Polymer Sci, 2017, 2017: 1-8.

[15]

Flory PJ, Rehner J. Statistical mechanics of cross-linked polymer networks I. rubberlike elasticity. J Chem Phys, 1943, 11(11): 512-520.

[16]

Fukushima Y, Kawahara S, Tanaka Y. Synthesis of graft copolymers from highly deproteinised natural rubber. J Rubber Res, 1988, 1: 154-166.

[17]

Gosecka M, Gosecki M. Characterization methods of polymer core–shell particles. Colloid Polym Sci, 2015, 293(10): 2719-2740.

[18]

Gupta KK, Aneja KR, Rana D. Current status of cow dung as a bioresource for sustainable development. Bioresour Bioprocess, 2016

[19]

Haile A, Gelebo GG, Tesfaye T, Mengie W, Mebrate MA, Abuhay A, Limeneh DY. Pulp and paper mill wastes: utilizations and prospects for high value-added biomaterials. Bioresour Bioprocess, 2021

[20]

Huang F, Liu Y, Zhang X, Wei G, Gao J, Song Z, Zhang M, Qiao J. Effect of elastomeric nanoparticles on toughness and heat resistance of epoxy resins. Macromol Rapid Commun, 2002, 23: 786-790.

[21]

Indah Sari T, Handaya Saputra A, Bismo S, Maspanger R, Cifriadi DA. The effect of styrene monomer in the graft copolymerization of arcylonitrile onto deproteinized natural rubber. Int J Technol, 2015

[22]

Indah Sari T, Handaya Saputra A, Bismo S, Maspanger RD. Deproteinized natural rubber grafted with polyacrylonitrile (pan)/polystirene (ps) and degradation of its mechanical properties by dimethyl ether. Int J Technol, 2020

[23]

Ji B, Liu C, Huang W, Yan D. Novel hyperbranched predominantly alternating copolymers made from a charge transfer complex monomer pair of p-(chloromethyl)styrene and acrylonitrile via controlled living radical copolymerization. Polym Bull, 2005, 55(3): 181-189.

[24]

Kangwansupamonkon W, Gilbert RG, Kiatkamjornwong S. Modification of natural rubber by grafting with hydrophilic vinyl monomers. Macromol Chem Phys, 2005, 206(24): 2450-2460.

[25]

Kawahara S, Klinklai W, Kuroda H, Isono Y. Removal of proteins from natural rubber with urea. Polym Adv Technol, 2004, 15(4): 181-184.

[26]

Kishore K, Pandey HK. Spectral studies on plant rubbers. Prog Polym Sci, 1986, 12(1): 155-178.

[27]

Kochthongrasamee T, Prasassarakich P, Kiatkamjornwong S. Effects of redox initiator on graft copolymerization of methyl methacrylate onto natural rubber. J Appl Polym Sci, 2006, 101(4): 2587-2601.

[28]

Kongparakul S, Prasassarakich P, Rempel GL. Effect of grafted methyl methacrylate on the catalytic hydrogenation of natural rubber. Eur Polymer J, 2008, 44(6): 1915-1920.

[29]

Lin Y, Amornkitbamrung L, Mora P, Jubsilp C, Hemvichian K, Soottitantawat A, Ekgasit S, Rimdusit S. Effects of coagent functionalities on properties of ultrafine fully vulcanized powdered natural rubber prepared as toughening filler in rigid PVC. Polymers, 2021, 13(2): 289.

[30]

Liu Y, Zhang X, Gao J, Huang F, Tan B, Wei G, Qiao J. Toughening of polypropylene by combined rubber system of ultrafine full-vulcanized powdered rubber and SBS. Polymer, 2004, 45(1): 275-286.

[31]

Liu Y, Fan Z, Ma H, Tan Y, Qiao J. Application of nano powdered rubber in friction materials. Wear, 2006, 261(2): 225-229.

[32]

Liu D, Kang J, Chen P, Liu X, Cao Y. 1H NMR and 13C NMR investigation of microstructures of carboxyl-terminated butadiene acrylonitrile rubbers. J Macromol Sci Part B, 2013, 52(1): 127-137.

[33]

Liu X, Gao Y, Bian L, Wang Z. Preparation and characterization of natural rubber/ultrafine full-vulcanized powdered styrene–butadiene rubber blends. Polym Bull, 2014, 71(8): 2023-2037.

[34]

Ma H, Wei G, Liu Y, Zhang X, Gao J, Huang F, Tan B, Song Z, Qiao J. Effect of elastomeric nanoparticles on properties of phenolic resin. Polymer, 2005, 46(23): 10568-10573.

[35]

Manshaie R, Nouri Khorasani S, Jahanbani Veshare S, Rezaei Abadchi M. Effect of electron beam irradiation on the properties of natural rubber (NR)/styrene–butadiene rubber (SBR) blend. Radiat Phys Chem, 2011, 80(1): 100-106.

[36]

Nallasamy P, Mohan S. Vibrational spectra of cis-1,4-polyisoprene. Arab J Sci Eng, 2004, 28(1A): 17-26.

[37]

Nguyen TH, Do QV, Tran AD, Kawahara S. Preparation of hydrogenated natural rubber with nanomatrix structure. Polym Adv Technol, 2019, 31(1): 86-93.

[38]

Nguyen Duy H, Rimdusit N, Tran Quang T, Phan Minh Q, Vu Trung N, Nguyen TN, Nguyen TH, Rimdusit S, Ougizawa T, Tran Thi T. Improvement of thermal properties of Vietnam deproteinized natural rubber via graft copolymerization with styrene/acrylonitrile and diimide transfer hydrogenation. Polym Adv Technol, 2020, 32(2): 736-747.

[39]

Pan C, Liu P. Fluorinated nitrile-butadiene rubber (F-NBR) via metathesis degradation: closed system or open system?. Eur Polymer J, 2022, 162.

[40]

Park M, Choi Y, Lee S-Y, Kim H-Y, Park S-J. Influence of electron-beam irradiation on thermal stabilization process of polyacrylonitrile fibers. J Ind Eng Chem, 2014, 20(4): 1875-1878.

[41]

Pongsathit S, Pattamaprom C. Irradiation grafting of natural rubber latex with maleic anhydride and its compatibilization of poly(lactic acid)/natural rubber blends. Radiat Phys Chem, 2018, 144: 13-20.

[42]

Prasassarakich P, Sintoorahat P, Wongwisetsirikul N. Enhanced graft copolymerization of styrene and acrylonitrile onto natural rubber. J Chem Eng Jpn, 2001, 34(2): 249-253.

[43]

Prukkaewkanjana K, Kawahara S, Sakdapipanich J. Influence of reaction conditions on the properties of nano-matrix structure formed by graft-copolymerization of acrylonitrile onto natural rubber. Adv Mater Res, 2013, 844: 365-368.

[44]

Pukkate N, Kitai T, Yamamoto Y, Kawazura T, Sakdapipanich J, Kawahara S. Nano-matrix structure formed by graft-copolymerization of styrene onto natural rubber. Eur Polymer J, 2007, 43(8): 3208-3214.

[45]

Qiao J. Elastomeric nano-particle and its applications in polymer modifications. Adv Ind Eng Polymer Res, 2020, 3(2): 47-59.

[46]

Qiao J., Wei G., Zhang Xiaohong, Zhang Shijun, Gao Jianming, Zhang Wei, . . . ., Y. H. (2002). US 6,423,760 B1. United States Patent.

[47]

Rezaei Abadchi M, Jalali-Arani A. The use of gamma irradiation in preparation of polybutadiene rubber nanopowder; its effect on particle size, morphology and crosslink structure of the powder. Nucl Instrum Methods Phys Res, Sect B, 2014, 320: 1-5.

[48]

Rimdusit N, Jubsilp C, Mora P, Hemvichian K, Thuy TT, Karagiannidis P, Rimdusit S. Radiation graft-copolymerization of ultrafine fully vulcanized powdered natural rubber: effects of styrene and acrylonitrile contents on thermal stability. Polymers, 2021

[49]

Safeeda Nv F, Gopinathan J, Indumathi B, Thomas S, Bhattacharyya A. Morphology and hydroscopic properties of acrylic/thermoplastic polyurethane core–shell electrospun micro/nano fibrous mats with tunable porosity. RSC Adv, 2016, 6(59): 54286-54292.

[50]

Schneider M, Pith T, Lambla M. Preparation and morphological characterization of two- and three-component natural rubber-based latex particles. J Appl Polym Sci, 1996, 62(2): 273-290.

[51]

Seleem S, Hopkins M, Olivio J, Schiraldi DA. Comparison of thermal decomposition of polystyrene products vs bio-based polymer aerogels. Ohio J Sci, 2017

[52]

Staverman AJ (1979) Science and technology of rubber, F. R. Eirich, Ed., Academic, New York, 1978, 670 pp. Journal of Polymer Science: Polymer Letters Edition, 17(2). https://doi.org/10.1002/pol.1979.130170209

[53]

Taewattana R, Jubsilp C, Suwanmala P, Rimdusit S. Effect of gamma irradiation on properties of ultrafine rubbers as toughening filler in polybenzoxazine. Radiat Phys Chem, 2018, 145: 184-192.

[54]

Tian M, Tang Y-W, Lu Y-L, Qiao J, Li T, Zhang L-Q. Novel rubber blends made from ultra-fine full-vulcanized powdered rubber (UFPR). Polym J, 2006, 38(1): 50-56.

[55]

Tuti IS, Asep HS, Setijo B, Dadi RM, Adi C. The effect of styrene monomer in the graft copolymerization of arcylonitrile onto deproteinized natural rubber. Int J Technol, 2015

[56]

Wang Q, Zhang X, Liu S, Gui H, Lai J, Liu Y, Gao J, Huang F, Song Z, Tan B, Qiao J. Ultrafine full-vulcanized powdered rubbers/PVC compounds with higher toughness and higher heat resistance. Polymer, 2005, 46(24): 10614-10617.

[57]

Wang J, Zhang X, Jiang L, Qiao J. Advances in toughened polymer materials by structured rubber particles. Prog Polym Sci, 2019, 98: 101-160.

[58]

Wongkumchai R, Amornkitbamrung L, Mora P, Jubsilp C, Rimdusit S. Effects of coagent incorporation on properties of ultrafine fully vulcanized powdered natural rubber prepared as toughening filler in polybenzoxazine. SPE Polymers, 2021, 2(3): 191-198.

[59]

Wongthong P, Nakason C, Pan Q, Rempel GL, Kiatkamjornwong S. Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride. Eur Polymer J, 2013, 49(12): 4035-4046.

[60]

Wu F, Xie T, Yang G. Properties of toughened poly(butylene terephthalate) by blending with reactive ultra-fine full-vulcanized acrylonitrile butadiene rubber particles (UFNBRP). Polym Bull, 2010, 65(7): 731-742.

[61]

Xue TJ, McKinney MA, Wilkie CA. The thermal degradation of polyacrylonitrile. Polym Degrad Stab, 1997, 58: 193-202.

[62]

Yang M, Zhu W, Cao H. Biorefinery methods for extraction of oil and protein from rubber seed. Bioresour Bioprocess, 2021

[63]

Yu S, Hu H, Ma J, Yin J. Tribological properties of epoxy/rubber nanocomposites. Tribol Int, 2008, 41(12): 1205-1211.

Funding

National Research Council of Thailand

Thailand Science Research and Innovation (TSRI)

the 90TH Anniversary of Chulalongkorn University Scholarship((50 3/2564))

Thailand Institute of Nuclear Technology

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/