Light-driven progesterone production by InP–(M. neoaurum) biohybrid system

Kun Liu , Feng-Qing Wang , Ke Liu , Yunqiu Zhao , Bei Gao , Xinyi Tao , Dongzhi Wei

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 93

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 93 DOI: 10.1186/s40643-022-00575-7
Research

Light-driven progesterone production by InP–(M. neoaurum) biohybrid system

Author information +
History +
PDF

Abstract

Progesterone is one of the classical hormone drugs used in medicine for maintaining pregnancy. However, its manufacturing process, coupled with organic reagents and poisonous catalysts, causes irreversible environmental pollution. Recent advances in synthetic biology have demonstrated that the microbial biosynthesis of natural products, especially difficult-to-synthesize compounds, from building blocks is a promising strategy. Herein, overcoming the heterologous cytochrome P450 enzyme interdependency in Mycolicibacterium neoaurum successfully constructed the CYP11A1 running module to realize metabolic conversion from waste phytosterols to progesterone. Subsequently, progesterone yield was improved through strategies involving electron transfer and NADPH regeneration. Mutant CYP11A1 (mCYP11A1) and adrenodoxin reductase (ADR) were connected by a flexible linker (L) to form the chimera mCYP11A1-L-ADR to enhance electron transfer. The chimera mCYP11A1-L-ADR, adrenodoxin (ADX), and ADR-related homolog ARH1 were expressed in M. neoaurum, showed positive activity and produced 45 mg/L progesterone. This electron transfer strategy increased progesterone production by 3.95-fold compared with M. neoaurum expressing mCYP11A1, ADR, and ADX. Significantly, a novel inorganic–biological hybrid system was assembled by combining engineered M. neoaurum and InP nanoparticles to regenerate NADPH, which was increased 84-fold from the initial progesterone titer to 235 ± 50 mg/L. In summary, this work highlights the green and sustainable potential of obtaining synthetic progesterone from sterols in M. neoaurum.

Keywords

Synthetic biology / Progesterone / P450 / Electron transfer / InP nanoparticles / NADPH/NADP+

Cite this article

Download citation ▾
Kun Liu, Feng-Qing Wang, Ke Liu, Yunqiu Zhao, Bei Gao, Xinyi Tao, Dongzhi Wei. Light-driven progesterone production by InP–(M. neoaurum) biohybrid system. Bioresources and Bioprocessing, 2022, 9(1): 93 DOI:10.1186/s40643-022-00575-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol, 2014, 98(14): 6185-6203.

[2]

Biggs BW, Lim CG, Sagliani K, Shankar S, Stephanopoulos G, De Mey M, Ajikumar PK. Overcoming heterologous protein interdependency to optimize P450-mediated taxol precursor synthesis in Escherichia coli. Proc Natl Acad Sci USA, 2016, 113(12): 3209-3214.

[3]

Brown KA, Harris DF, Wilker MB, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters JW, Seefeldt LC, King PW. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science, 2016, 352(6284): 448-450.

[4]

Caro A, Boltes K, Letón P, García-Calvo E. Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem Eng J, 2007, 35(2): 191-197.

[5]

Chen X, Zaro JL, Shen W. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev, 2013, 65(10): 1357-1369.

[6]

Dodhia VR, Sassone C, Fantuzzi A, Nardo GD, Sadeghi SJ, Gilardi G. Modulating the coupling efficiency of human cytochrome P450 CYP3A4 at electrode surfaces through protein engineering. Electrochem Commun, 2008, 10(11): 1744-1747.

[7]

Donova MV, Egorova OV. Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol, 2012, 94(6): 1423-1447.

[8]

Duport C, Spagnoli R, Degryse E, Pompon D. Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nat Biotechnol, 1998, 16(2): 186-189.

[9]

Feng J, Wu Q, Zhu D, Ma Y. Biotransformation enables innovations toward green synthesis of steroidal pharmaceuticals. Chemsuschem, 2022

[10]

Fisher CW, Shet MS, Caudle DL, Martin-Wixtrom CA, Estabrook RW. High-level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes P450 and NADPH-P450 reductase flavoprotein. Proc Natl Acad Sci USA, 1992, 89(22): 10817-10821.

[11]

Gao X, Yang S, Zhao C, Ren Y, Wei D. Artificial multienzyme supramolecular device: highly ordered self-assembly of oligomeric enzymes in vitro and in vivo. Angew Chem Int Ed, 2014, 53(51): 14027-14030.

[12]

Gerber A, Kleser M, Biedendieck R, Bernhardt R, Hannemann F. Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in recombinant Bacillus megaterium. Microb Cell Fact, 2015

[13]

Grinberg AV, Hannemann F, Schiffler B, Muller J, Heinemann U, Bernhardt R. Adrenodoxin: structure, stability, and electron transfer properties. Proteins, 2000, 40(4): 590-612.

[14]

Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol, 2001, 14(6): 611-650.

[15]

Guo J, Tardy BL, Christofferson AJ, Dai Y, Richardson JJ, Zhu W, Hu M, Ju Y, Cui J, Dagastine RR, Yarovsky I, Caruso F. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat Nanotechnol, 2016, 11(12): 1105-1111.

[16]

Guo J, Suastegui M, Sakimoto KK, Moody VM, Xiao G, Nocera DG, Joshi NS. Light-driven fine chemical production in yeast biohybrids. Science, 2018, 362(6416): 813-816.

[17]

Guryev O, Carvalho RA, Usanov S, Gilep A, Estabrook RW. A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Proc Natl Acad Sci USA, 2003, 100(25): 14754-14759.

[18]

Hanson JR. Steroids: reactions and partial synthesis. Nat Prod Rep, 2005, 22(1): 104.

[19]

Harikrishna JA, Black SM, Szklarz GD, Miller WL. Construction and function of fusion enzymes of the human cytochrome P450scc system. DNA Cell Biol, 1993, 12(5): 371-379.

[20]

Hu G, Li Z, Ma D, Ye C, Zhang L, Gao C, Liu L, Chen X. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat Catal, 2021, 4(5): 395-406.

[21]

Janocha S, Bichet A, Zöllner A, Bernhardt R. Substitution of lysine with glutamic acid at position 193 in bovine CYP11A1 significantly affects protein oligomerization and solubility but not enzymatic activity. Biochim Biophys Acta Proteins Proteom, 2011, 1814(1): 126-131.

[22]

Karim AS, Curran KA, Alper HS. Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res, 2013, 13(1): 107-116.

[23]

Kohlmann C, Märkle W, Lütz S. Electroenzymatic synthesis. J Mol Catal B Enzym, 2008, 51(3–4): 57-72.

[24]

Langsdorf A, Volkmar M, Holtmann D, Ulber R. Material utilization of green waste: a review on potential valorization methods. Bioresour Bioprocess, 2021, 8(19): 1-26.

[25]

Liu X, Yu X. Enhancement of butanol production: from biocatalysis to bioelectrocatalysis. ACS Energy Lett, 2020, 5(3): 867-878.

[26]

Liu M, Xiong L, Tao X, Liu Q, Wang F, Wei D. Integrated transcriptome and proteome studies reveal the underlying mechanisms for sterol catabolism and steroid production in Mycobacterium neoaurum. J Agric Food Chem, 2018, 66(34): 9147-9157.

[27]

Liu X, Shi L, Gu J. Microbial electrocatalysis: redox mediators responsible for extracellular electron transfer. Biotechnol Adv, 2018, 36(7): 1815-1827.

[28]

Liu K, Zhang Y, Liu K, Zhao Y, Gao B, Tao X, Zhao M, Wang F, Wei D. De novo design of a transcription factor for a progesterone biosensor. Biosens Bioelectron, 2022, 203.

[29]

Makeeva DS, Dovbnya DV, Donova MV, Novikova LA. Functional reconstruction of bovine P450scc steroidogenic system in Escherichia coli. Am J Mol Biol, 2013, 03(04): 173-182.

[30]

Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science, 2000, 289(5485): 1751-1754.

[31]

Murakami H, Yabusaki Y, Sakaki T, Shibata M, Ohkawa H. A genetically engineered P450 monooxygenase: construction of the functional fused enzyme between rat cytochrome P450c and NADPH-cytochrome P450 reductase. DNA, 1987, 6(3): 189-197.

[32]

Peng H, Wang Y, Jiang K, Chen X, Zhang W, Zhang Y, Deng Z, Qu X. A dual role reductase from phytosterols catabolism enables the efficient production of valuable steroid precursors. Angew Chem Int Ed, 2021, 60(10): 5414-5420.

[33]

Pikuleva IA. Putative F-G loop is involved in association with the membrane in P450scc (P450 11A1). Mol Cell Endocrinol, 2004, 215(1–2): 161-164.

[34]

Sadeghi SJ, Gilardi G. Chimeric P450 enzymes: activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem, 2013, 60(1): 102-110.

[35]

Sagadin T, Riehm JL, Milhim M, Hutter MC, Bernhardt R. Binding modes of CYP106A2 redox partners determine differences in progesterone hydroxylation product patterns. Commun Biol, 2018

[36]

Sakimoto KK, Wong AB, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science, 2015, 351(6268): 74-77.

[37]

Slominski A, Semak I, Zjawiony J, Wortsman J, Gandy MN, Li J, Zbytek B, Li W, Tuckey RC. Enzymatic metabolism of ergosterol by cytochrome P450scc to biologically active 17α,24-dihydroxyergosterol. Chem Biol, 2005, 12(8): 931-939.

[38]

Song Z, Wei C, Li C, Gao X, Mao S, Lu F, Qin H. Customized exogenous ferredoxin functions as an efficient electron carrier. Bioresour Bioprocess, 2021, 8(109): 1-13.

[39]

Strizhov N, Fokina V, Sukhodolskaya G, Dovbnya D, Karpov M, Shutov A, Novikova L, Donova M. Progesterone biosynthesis by combined action of adrenal steroidogenic and mycobacterial enzymes in fast growing Mycobacteria. New Biotechnol, 2014, 31: S67.

[40]

Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci USA, 2011, 108(25): 10139-10143.

[41]

Sun W, Wang L, Liu H, Liu Y, Ren Y, Wang F, Wei D. Characterization and engineering control of the effects of reactive oxygen species on the conversion of sterols to steroid synthons in Mycobacterium neoaurum. Metab Eng, 2019, 56: 97-110.

[42]

Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol, 2003, 21(2): 143-149.

[43]

van Amsterdam IMC, Ubbink M, Einsle O, Messerschmidt A, Merli A, Cavazzini D, Rossi GL, Canters GW. Dramatic modulation of electron transfer in protein complexes by crosslinking. Nat Struct Biol, 2002, 9(1): 48-52.

[44]

Wang Y, San KY, Bennett GN. Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol, 2013, 24(6): 994-999.

[45]

Wang X, Saba T, Yiu HHP, Howe RF, Anderson JA, Shi J. Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem-US, 2017, 2(5): 621-654.

[46]

Wang X, Li J, Zhang C, Zhang Y, Meng J. Self-assembly of CdS@C. Beijerinckii hybrid system for efficient lignocellulosic butanol production. Chem Eng J, 2021, 424: 130458.

[47]

Wu J, Ng I. Biofabrication of gold nanoparticles by Shewanella species. Bioresour Bioprocess, 2017, 4(50): 1-9.

[48]

Xu L, Liu Y, Yao K, Liu H, Tao X, Wang F, Wei D. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Sci Rep, 2016

[49]

Xu M, Tremblay P, Jiang L, Zhang T. Stimulating bioplastic production with light energy by coupling Ralstonia eutropha with the photocatalyst graphitic carbon nitride. Green Chem, 2019, 21(9): 2392-2400.

[50]

Yao K, Wang F, Zhang H, Wei D. Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metab Eng, 2013, 15: 75-87.

[51]

Yao K, Xu L, Wang F, Wei D. Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Metab Eng, 2014, 24: 181-191.

[52]

Zhang Y, Huang Z, Du C, Li Y, Cao ZA. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab Eng, 2009, 11: 101-106.

[53]

Zhang RK, Chen K, Huang X, Wohlschlager L, Renata H, Arnold FH. Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp3 C–H functionalization. Nature, 2019, 565(7737): 67-72.

[54]

Zhang X, Peng Y, Zhao J, Li Q, Yu X, Acevedo-Rocha CG, Li A. Bacterial cytochrome P450-catalyzed regio- and stereoselective steroid hydroxylation enabled by directed evolution and rational design. Bioresour Bioprocess, 2020, 7(2): 1-18.

[55]

Zhao Y, Shen Y, Ma S, Luo J, Ouyang W, Zhou H, Tang R, Wang M. Production of 5α-androstene-3,17-dione from phytosterols by co-expression of 5α-reductase and glucose-6-phosphate dehydrogenase in engineered Mycobacterium neoaurum. Green Chem, 2019, 21(7): 1809-1815.

[56]

Zhou X, Zhang Y, Shen Y, Zhang X, Zan Z, Xia M, Luo J, Wang M. Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle. Bioresour Technol, 2020, 309.

Funding

Innovative Research Group Project of the National Natural Science Foundation of China(Grant No. 21776075)

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/