Characterization of a novel GH10 alkali-thermostable xylanase from a termite microbiome

Maria Laura Mon , Rubén Marrero Díaz de Villegas , Eleonora Campos , Marcelo A. Soria , Paola M. Talia

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 84

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) :84 DOI: 10.1186/s40643-022-00572-w
Research

Characterization of a novel GH10 alkali-thermostable xylanase from a termite microbiome

Author information +
History +
PDF

Abstract

1.

Biochemical and molecular structural characterization of a novel GH10 xylanase (Xyl10B) from a termite gut microbiome.

2.

Xyl10B is a candidate biocatalyst in the bleaching process of pulp and the paper industries because of its inactivity on carboxymethyl cellulose.

3.

The shorter xylooligosaccharides generated from the hydrolysis of xylan would be suitable in different applications, including the food industry as prebiotics.

Keywords

GH10 / Endoxylanase / Biochemical characterization / Termite gut microbiome

Cite this article

Download citation ▾
Maria Laura Mon, Rubén Marrero Díaz de Villegas, Eleonora Campos, Marcelo A. Soria, Paola M. Talia. Characterization of a novel GH10 alkali-thermostable xylanase from a termite microbiome. Bioresources and Bioprocessing, 2022, 9(1): 84 DOI:10.1186/s40643-022-00572-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. Biotechnol Biofuels, 2021, 14(1): 5.

[2]

Al-Darkazali H, Meevootisom V, Isarangkul D, Wiyakrutta S. Gene expression and molecular characterization of a xylanase from chicken cecum metagenome. Int J Microbiol, 2017, 2017: 4018398.

[3]

Alvarez TM, Goldbeck R, dos Santos CR, Paixão DA, Gonçalves TA, Franco Cairo JP, Almeida RF, de Oliveira PI, Jackson G, Cota J, Büchli F, Citadini AP, Ruller R, Polo CC, de Oliveira NM, Murakami MT, Squina FM. Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS ONE, 2013, 8(7

[4]

Alves K, Silva M, Cotta S, Ottoni J, van Elsas J, Oliveira V, Andreote F. Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz J Microbiol, 2020, 51(1): 217-228.

[5]

Amoozegar MA, Safarpour A, Noghabi KA, Bakhtiary T, Ventosa A. Halophiles and their vast potential in biofuel production. Front Microbiol, 2019

[6]

Baker D, Sali A. Protein structure prediction and structural genomics. Science, 2001, 294(5540): 93-96.

[7]

Batista-García RA, del Rayo S-C, Talia P, Jackson SA, O'Leary ND, Dobson ADW, Folch-Mallol JL. From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels Bioprod Bioref, 2016, 10: 864-882.

[8]

Ben Guerrero E, Arneodo J, Campanha BR, Abrão de Oliveira P, Veneziano Labate MT, Regiani T, Campos E, Cataldi A, Labate CA, Rodrigues MC, Talia P. Prospection and evaluation of cellulolytic and hemicellulolytic enzymes using untreated and pretreated biomass in two argentinean native termites. PLoS ONE, 2015, 10(8

[9]

Ben Guerrero EB, de Villegas RMD, Soria MA, Santangelo MP, Campos E, Talia PM. Characterization of two GH5 endoglucanases from termite microbiome using synthetic metagenomics. Appl Microbiol Biotechnol, 2020, 104(19): 8351-8366.

[10]

Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 2011, 27(3): 343-350.

[11]

Berini F, Casciello C, Marcone GL, Marinelli F. Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett, 2017

[12]

Bhardwaj N, Kumar B, Verma PA. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess, 2019

[13]

Bignell DE, Eggleton P. On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insectes Soc, 2005, 42(1): 57-69.

[14]

Brennan Y, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, Hernandez M, Keller M, Li K, Palackal N, Sittenfeld A, Tamayo G, Wells S, Hazlewood GP, Mathur EJ, Short JM, Robertson DE, Steer BA. Unusual microbial xylanases from insect guts. Appl Environ Microbiol, 2004, 70(6): 3609-3617.

[15]

Charnock SJ, Spurway TD, Xie H, Beylot MH, Virden R, Warren RA, Hazlewood GP, Gilbert HJ. The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J Biol Chem, 1998, 273(48): 32187-32199.

[16]

Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. All-atom structure validation for macromolecular crystallography. Acta Crys, 2010, 66: 16-21.

[17]

Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev, 2005, 29(1): 3-23.

[18]

Dao TK, Do TH, Le NG, Nguyen HD, Nguyen TQ, Le TTH, Truong NH. Understanding the role of Prevotella genus in the digestion of lignocellulose and other substrates in Vietnamese native goats’ rumen by metagenomic deep sequencing. Animals, 2021, 11(11): 3257.

[19]

Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK. A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J Ind Microbiol Biotechnol, 2012, 39(6): 851-860.

[20]

Ellilä S, Bromann P, Nyyssönen M, Itävaara M, Koivula A, Paulin L, Kruus K. Cloning of novel bacterial xylanases from lignocellulose-enriched compost metagenomic libraries. AMB Express, 2019, 9(1): 124.

[21]

Fredriksen L, Stokke R, Jensen MS, Westereng B, Jameson JK, Steen IH, Eijsink VGH. Discovery of a thermostable GH10 xylanase with broad substrate specificity from the arctic mid-ocean ridge vent system. Appl Environ Microbiol, 2019

[22]

Gabbanelli N, Erbetta E, Sanz Smachetti ME, Lorenzo M, Talia PM, Ramírez I, Vera M, Durruty I, Pontaroli AC, Echarte MM. Towards an ideotype for food-fuel dual-purpose wheat in Argentina with focus on biogas production. Biotechnol Biofuels, 2021

[23]

Gong X, Gruniniger RJ, Forster RJ, Teather RM, McAllister TA. Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library. Appl Microbiol Biotechnol, 2013, 97(6): 2423-2431.

[24]

Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-beta-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol, 2009, 84(6): 1107-1115.

[25]

Hero JS, Pisa JH, Romero CM, Nordberg Karlsson E, Linares-Pastén JA, Martinez MA. Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products. Appl Microbiol Biotechnol, 2021, 105(18): 6759-6778.

[26]

Jacomini D, Bussler L, Corrêa J, Kadowaki M, Maller A, Silva J, Simão R. Cloning, expression and characterization of C. crescentus xynA2 gene and application of Xylanase II in the deconstruction of plant biomass. Mol Biol Rep, 2020, 47(6): 4427-4438.

[27]

Joshi N, Sharma M, Singh SP. Characterization of a novel xylanase from an extreme temperature hot spring metagenome for xylooligosaccharide production. Appl Microbiol Biotechnol, 2020, 104(11): 4889-4901.

[28]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873): 583-589.

[29]

Kim DY, Kim J, Lee YM, Lee JS, Shin DH, Ku BH, Son KH, Park HY. Identification and characterization of a novel, cold-adapted d-xylobiose- and d-xylose-releasing endo-β-1,4-xylanase from an Antarctic soil bacterium, Duganella sp. PAMC 27433. Biomolecules, 2021, 11(5): 680.

[30]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35(6): 1547-1549.

[31]

Lai Z, Zhou C, Ma X, Xue Y, Ma Y. Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. Int J Biol Macromol, 2021, 170: 164-177.

[32]

Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM. PDBsum: structural summaries of PDB entries. Protein Sci, 2018, 27(1): 129-134.

[33]

Liew KJ, Liang CH, Lau YT, Yaakop AS, Chan KG, Shahar S, Shamsir MS, Goh KM. Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures. Sci Rep, 2022, 12: 2850.

[34]

Linares-Pastén JA, Hero JS, Pisa JH, Teixeira C, Nyman M, Adlercreutz P, Martinez MA, Karlsson EN. Novel xylan-degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM18205. Glycobiology, 2021, 31(10): 1330-1349.

[35]

Liu Z, Zhao X, Bai F. Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol, 2013, 97(10): 4361-4368.

[36]

Liu N, Li H, Chevrette MG, Zhang L, Cao L, Zhou H, Zhou X, Zhou Z, Pope PB, Currie CR, Huang Y, Wang Q. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J, 2019, 13(1): 104-117.

[37]

Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B. An alkaline active xylanase: Insights into mechanisms of high pH catalytic adaptation. Biochimie, 2009, 91(9): 1187-1196.

[38]

Mhiri S, Bouanane-Darenfed A, Jemli S, Neifar S, Ameri R, Mezghani M, Bouacem K, Jaouadi B, Bejar S. A thermophilic and thermostable xylanase from Caldicoprobacter algeriensis: Recombinant expression, characterization and application in paper biobleaching. Int J Biolo Macromol, 2020, 164: 808-817.

[39]

Mo X-c, Chen C-l, Pang H, Feng Y, Feng J-x. Identification and characterization of a novel xylanase derived from a rice straw degrading enrichment culture. Appl Microbiol Biotechnol, 2010, 87(6): 2137-2146.

[40]

Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustain Energ Fuels, 2021, 6(1): 29-65.

[41]

Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J Microbiol Biotechnol, 2012, 22(4): 462-469.

[42]

Pavarina G, Lemos E, Lima N, Sarmanho Pizauro J. Characterization of a new bifunctional endo-1,4-β-xylanase/esterase found in the rumen metagenome. Sci Rep, 2021, 11: 10440.

[43]

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem, 2004, 25(13): 1605-1612.

[44]

Polizeli ML, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol, 2005, 67(5): 577-591.

[45]

Prakash S, Veeranagouda Y, Kyoung L, Sreeramulu K. Xylanase production using inexpensive agricultural wastes and its partial characterization from a halophilic Chromohalobacter sp. TPSV 101. World J Microbiol Biotechnol, 2009, 25(2): 197-204.

[46]

Rashamuse K, Sanyika Tendai W, Mathiba K, Ngcobo T, Mtimka S, Brady D. Metagenomic mining of glycoside hydrolases from the hindgut bacterial symbionts of a termite (Trinervitermes trinervoides) and the characterization of a multimodular β-1,4-xylanase (GH11). Biotechnol Appl Biochem, 2017, 64: 174-186.

[47]

Romano N, Gioffré A, Sede S, Campos E, Cataldi A, Talia P. Characterization of cellulolytic activities of environmental bacterial consortia from an Argentinian native forest. Curr Microbiol, 2013, 67: 138-147.

[48]

Romero Victorica M, Soria MA, Batista-García RA, Ceja-Navarro JA, Vikram S, Ortiz M, Ontañon O, Ghio S, Martínez-Ávila L, Quintero García OJ, Etcheverry C, Campos E, Cowan D, Arneodo J, Talia PM. Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Sci Rep, 2020, 10(1): 3864.

[49]

Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc, 2010, 5: 725-738.

[50]

Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res, 2005, 33: W382.

[51]

Tian L, Liu S, Wang S, Wang L. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Sci Rep, 2016, 6: 23605.

[52]

Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3. 0: computed atlas of surface topography of proteins. Nucleic Acids Res, 2018, 46(W1): W363-w367.

[53]

Vacilotto M, Veiga Sepulchro A, Pellegrini V, Polikarpov I. Production of prebiotic xylooligosaccharides from arabino- and glucuronoxylan using a two-domain Jonesia denitrificans xylanase from GH10 family. Enzyme Microb Technol, 2021, 144.

[54]

Vasić K, Knez Ž, Leitgeb M. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules, 2021

[55]

Verma D. Extremophilic prokaryotic endoxylanases: diversity, applicability, and molecular insights. Front Microbiol, 2021, 12.

[56]

Verma D, Satyanarayana T. Xylanolytic extremozymes retrieved from environmental metagenomes: characteristics, genetic engineering, and applications. Front Microbiol, 2020, 11.

[57]

Verma D, Kawarabayasi Y, Miyazaki K, Satyanarayana T. Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS ONE, 2013, 8(1

[58]

Vikram S, Arneodo JD, Calcagno J, Ortiz M, Mon ML, Etcheverry C, Cowan DA, Talia P. Diversity structure of the microbial communities in the guts of four neotropical termite species. PeerJ, 2021, 9.

[59]

Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng, 1995, 8(2): 127-134.

[60]

Wang G, Wu J, Yan R, Lin J, Ye X. A novel multi-domain high molecular, salt-stable alkaline xylanase from Alkalibacterium sp. SL3. Front Microbiol, 2017, 7: 2120.

[61]

Wang H, Li Z, Liu H, Li S, Qiu H-y, Li K, Luo X, Song Y, Wang N, He H, Zhou H, Ma W, Zhang T-C. Heterologous expression in Pichia pastoris and characterization of a novel GH11 xylanase from saline-alkali soil with excellent tolerance to high pH, high salt concentrations and ethanol. Protein Expr Purif, 2017, 139: 71-77.

[62]

Wang J, Liang J, Li Y, Tian L, Wei Y. Characterization of efficient xylanases from industrial-scale pulp and paper wastewater treatment microbiota. AMB Express, 2021, 11(1): 19.

[63]

Wu H, Ioannou E, Henrissat B, Montanier CY, Bozonnet S, O’Donohue MJ, Dumon C. Multimodularity of a GH10 xylanase found in the termite gut metagenome. Appl Environ Microbiol, 2021, 87: e01714-e1720.

[64]

Wu R, Wang L, Xie J, Zhang Z. Diversity and function of wolf spider gut microbiota revealed by shotgun metagenomics. Front Microbiol, 2021, 12.

[65]

Yu H, Zhao S, Fan Y, Hu C, Lu W, Guo L. Cloning and heterologous expression of a novel halo/alkali-stable multi-domain xylanase (XylM18) from a marine bacterium Marinimicrobium sp. strain LS-A18. Appl Microbiol Biotechnol, 2019, 103(21): 8899-8909.

[66]

Zhou J, Wu Q, Zhang R, Mo M, Tang X, Li J, Xu B, Ding J, Lu Q, Huang Z. A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14. Folia Microbiol (Praha), 2014, 59(5): 423-31.

Funding

Instituto Nacional de Tecnología Agropecuaria(PI 102)

Agencia Nacional de Promoción Científica y Tecnológica((PICT) 2018-#4149)

Consejo Nacional de Investigaciones Científicas y Técnicas(PIP-2021-2561)

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/