Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: Chlamydomonas reinhardtii chloroplast

Ke Ma , Lei Deng , Haizhen Wu , Jianhua Fan

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 83

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 83 DOI: 10.1186/s40643-022-00568-6
Review

Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: Chlamydomonas reinhardtii chloroplast

Author information +
History +
PDF

Abstract

Microalgae are cosmopolitan organisms in nature with short life cycles, playing a tremendous role in reducing the pressure of industrial carbon emissions. Besides, microalgae have the unique advantages of being photoautotrophic and harboring both prokaryotic and eukaryotic expression systems, becoming a popular host for recombinant proteins. Currently, numerous advanced molecular tools related to microalgal transgenesis have been explored and established, especially for the model species Chlamydomonas reinhardtii (C. reinhardtii hereafter). The development of genetic tools and the emergence of new strategies further increase the feasibility of developing C. reinhardtii chloroplasts as green factories, and the strong genetic operability of C. reinhardtii endows it with enormous potential as a synthetic biology platform. At present, C. reinhardtii chloroplasts could successfully produce plenty of recombinant proteins, including antigens, antibodies, antimicrobial peptides, protein hormones and enzymes. However, additional techniques and toolkits for chloroplasts need to be developed to achieve efficient and markerless editing of plastid genomes. Mining novel genetic elements and selectable markers will be more intensively studied in the future, and more factors affecting protein expression are urged to be explored. This review focuses on the latest technological progress of selectable markers for Chlamydomonas chloroplast genetic engineering and the factors that affect the efficiency of chloroplast protein expression. Furthermore, urgent challenges and prospects for future development are pointed out.

Keywords

Chlamydomonas reinhardtii / Chloroplast / Synthetic biology / Green factory / Selectable marker / Protein expression

Cite this article

Download citation ▾
Ke Ma, Lei Deng, Haizhen Wu, Jianhua Fan. Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: Chlamydomonas reinhardtii chloroplast. Bioresources and Bioprocessing, 2022, 9(1): 83 DOI:10.1186/s40643-022-00568-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad N, Mehmood MA, Malik S. Recombinant protein production in microalgae: emerging trends. Protein Peptide Lett, 2020, 27(2): 105-110.

[2]

Auchincloss AH, Zerges W, Perron K, Girard-Bascou J, Rochaix J-D. Characterization of Tbc2, a nucleus-encoded factor specifically required for translation of the chloroplast psbC mRNA in Chlamydomonas reinhardtii. J Cell Biol, 2002, 157(6): 953-962.

[3]

Barnes D, Franklin SE, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP. Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genom, 2005, 274(6): 625-636.

[4]

Barrera DJ, Rosenberg JN, Chiu JG, Chang Y-N, Debatis M, Ngoi S-M, Chang JT, Shoemaker CB, Oyler GA, Mayfield SP. Algal chloroplast produced camelid VHH antitoxins are capable of neutralizing botulinum neurotoxin. Plant Biotechnol J, 2015, 13(1): 117-124.

[5]

Bateman JM, Purton S. Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol Gen Genet, 2000, 263(3): 404-410.

[6]

Bertalan I, Munder MC, Weiß C, Kopf J, Fischer D, Johanningmeier U. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii. J Biotechnol, 2015, 195: 60-66.

[7]

Blazeck J, Alper HS. Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J, 2013, 8(1): 46-58.

[8]

Bouchnak I, van Wijk KJ. N-Degron pathways in plastids. Trends Plant Sci, 2019, 24(10): 917-926.

[9]

Boudreau E, Nickelsen J, Lemaire SD, Ossenbuhl F, Rochaix J-D. The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. EMBO J, 2000, 19(13): 3366-3376.

[10]

Boulouis A, Drapier D, Razafimanantsoa H, Wostrikoff K, Tourasse NJ, Pascal K, Girard-Bascou J, Vallon O, Wollman F-A, Choquet Y. Spontaneous dominant mutations in Chlamydomonas highlight ongoing evolution by gene diversification. Plant Cell, 2015, 27(4): 984-1001.

[11]

Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science, 1988, 240(4858): 1534-1538.

[12]

Carrera-Pacheco SE, Hankamer B, Oey M. Light and heat-shock mediated TDA1 overexpression as a tool for controlled high-yield recombinant protein production in Chlamydomonas reinhardtii chloroplasts. Algal Res, 2020, 48.

[13]

Cavaiuolo M, Kuras R, Wollman F-A, Choquet Y, Vallon O. Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism. Nucleic Acids Res, 2017, 45(18): 10783-10799.

[14]

Cazier AP, Blazeck J. Advances in promoter engineering: novel applications and predefined transcriptional control. Biotechnol J, 2021, 16.

[15]

Changko S, Rajakumar PD, Young REB, Purton S. The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas. Appl Microbiol Biot, 2020, 104(2): 675-686.

[16]

Costas AMG, White AK, Metcalf WW. Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J Biol Chem, 2001, 276(20): 17429-17436.

[17]

Crozet P, Navarro FJ, Willmund F, Mehrshahi P, Bakowski K, Lauersen KJ, Pérez-Pérez M-E, Auroy P, Gorchs Rovira A, Sauret-Gueto S, . Birth of a photosynthetic chassis: a MoClo toolkit enabling synthetic biology in the microalga Chlamydomonas reinhardtii. ACS Synth Biol, 2018, 7(9): 2074-2086.

[18]

Cutolo E, Tosoni M, Barera S, Herrera-Estrella L, Dall'Osto L, Bassi R. A chimeric hydrolase-PTXD transgene enables chloroplast-based heterologous protein expression and non-sterile cultivation of Chlamydomonas reinhardtii. Algal Res, 2021, 59.

[19]

Cutolo EA, Mandala G, Dall’Osto L, Bassi R. Harnessing the algal chloroplast for heterologous protein production. Microorganisms, 2022, 10: 743.

[20]

de Cambiaire J-C, Otis C, Lemieux C, Turmel M. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands. BMC Evol Biol, 2006, 6: 37.

[21]

Doron L, Na S, Shapira M. Transgene expression in microalgae-from tools to applications. Front Plant Sci, 2016

[22]

Douchi D, Qu Y, Longoni P, Legendre-Lefebvre L, Johnson X, Schmitz-Linneweber C, Goldschmidt-Clermont M. A nucleus-encoded chloroplast phosphoprotein governs expression of the photosystem I subunit psaC in Chlamydomonas reinhardtii. Plant Cell, 2016, 28(5): 1182-1199.

[23]

Dyo YM, Purton S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology, 2018, 164(2): 113-121.

[24]

Eberhard S, Drapier D, Wollman F-A. Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J, 2002, 31(2): 149-160.

[25]

Eberhard S, Loiselay C, Drapier D, Bujaldon S, Girard-Bascou J, Kuras R, Choquet Y, Wollman F-A. Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts in Chlamydomonas reinhardtii chloroplasts. Plant J, 2011, 67(6): 1055-1066.

[26]

Esland L, Larrea-Alvarez M, Purton S. Selectable markers and reporter genes for engineering the chloroplast of Chlamydomonas reinhardtii. Biology, 2018, 7: 46.

[27]

Fauser F, Vilarrasa-Blasi J, Onishi M, Ramundo S, Patena W, Millican M, Osaki J, Philp C, Nemeth M, Salome PA, . Systematic characterization of gene function in the photosynthetic alga Chlamydomonas reinhardtii. Nat Genet, 2022, 54(5): 705-714.

[28]

Felder S, Meierhoff K, Sane AP, Meurer J, Driemel C, Plücken H, Klaff P, Stein B, Bechtold N, Westhoff P. The nucleus-encoded HCF107 gene of Arabidopsis provides a link between intercistronic RNA processing and the accumulation of translation-competent psbH transcripts in chloroplasts. Plant Cell, 2001, 13(9): 2127-2141.

[29]

Gallaher SD, Fitz-Gibbon ST, Strenkert D, Purvine SO, Pellegrini M, Merchant SS. High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates. Plant J, 2018, 93(3): 545-565.

[30]

Gimpel JA, Nour-Eldin HH, Scranton MA, Li D, Mayfield SP. Refactoring the six-gene photosystem II core in the chloroplast of the green algae Chlamydomonas reinhardtii. ACS Synth Biol, 2016, 5(7): 589-596.

[31]

Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for sitedirected transformation of Chlamydomonas. Nucleic Acids Res, 1991, 19(15): 4083-4089.

[32]

Goldschmidt-Clermont M, Rahire M, Rochaix J-D. Redundant cis-acting determinants of 3' processing and RNA stability in the chloroplast rbcL mRNA of Chlamydomonas. Plant J, 2008, 53(3): 566-577.

[33]

Hachicha R, Elleuch F, Ben Hlima H, Dubessay P, de Baynast H, Delattre C, Pierre G, Hachicha R, Abdelkafi S, Michaud P, . Biomolecules from microalgae and cyanobacteria: applications and market survey. Appl Sci, 2022, 12: 1924.

[34]

Hollingshead S, Vapnek D. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid, 1985, 13(1): 17-30.

[35]

Hsu S-C, Browne DR, Tatli M, Devarenne TP, Stern DB. N-terminal sequences affect expression of triterpene biosynthesis enzymes in Chlamydomonas chloroplasts. Algal Res, 2019, 44.

[36]

Hwang H, Kim YT, Kang NS, Han JW. A simple method for removal of the Chlamydomonas reinhardtii cell wall using a commercially available subtilisin (Alcalase). J Mol Microb Biotech, 2018, 28(4): 169-178.

[37]

Jackson HO, Taunt HN, Mordaka PM, Smith AG, Purton S. The algal chloroplast as a testbed for synthetic biology designs aimed at radically rewiring plant metabolism. Front Plant Sci, 2021, 12.

[38]

Jackson HO, Taunt HN, Mordaka PM, Kumari S, Smith AG, Purton S. CpPosNeg: a positive-negative selection strategy allowing multiple cycles of marker-free engineering of the Chlamydomonas plastome. Biotechnol J, 2022

[39]

Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 1961, 3: 318-356.

[40]

Jalal A, Schwarz C, Schmitz-Linneweber C, Vallon O, Nickelsen J, Bohne A-V. A small multifunctional pentatricopeptide repeat protein in the chloroplast of Chlamydomonas reinhardtii. Mol Plant, 2015, 8(3): 412-426.

[41]

Johnson X, Wostrikoff K, Finazzi G, Kuras R, Schwarz C, Bujaldon S, Nickelsen J, Stern DB, Wollman F-A, Vallon O. MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. Plant Cell, 2010, 22(1): 234-248.

[42]

Joo S, Kariyawasam T, Kim M, Jin E, Goodenough U, Lee J-H. Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA. Nat Commun, 2022, 13: 1133.

[43]

Kasai S, Yoshimura S, Ishikura K, Takaoka Y, Kobayashi K, Kato K, Shinmyo A. Effect of coding regions on chloroplast gene expression in Chlamydomonas reinhardtii. J Biosci Bioeng, 2003, 95(3): 276-282.

[44]

Kato K, Marui T, Kasai S, Shinmyo A. Artificial control of transgene expression in Chlamydomonas reinhardtii chloroplast using the iac regulation system from Escherichia coli. J Biosci Bioeng, 2007, 104(3): 207-213.

[45]

Kato Y, Inabe K, Hidese R, Kondo A, Hasunuma T. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: a review. Bioresour Technol, 2022, 344.

[46]

Kindle KL, Richards KL, Stern DB. Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA, 1991, 88(5): 1721-1725.

[47]

Kuchka MR, Goldschmidt-Clermont M, van Dillewijn J, Rochaix JD. Mutation at the Chlamydomonas nuclear NAC2 locus specifically affects stability of the chloroplast psbD transcript encoding polypeptide D2 of PS II. Cell, 1989, 58(5): 869-876.

[48]

Larrea-Alvarez M, Purton S. Multigenic engineering of the chloroplast genome in the green alga Chlamydomonas reinhardtii. Microbiology, 2020, 166(6): 510-515.

[49]

Lee H, Bingham SE, Webber AN. Specific mutagenesis of reaction center proteins by chloroplast transformation of ChIamydomonas reinhardtii. Method Enzymol, 1998, 297: 310-320.

[50]

Lefebvre-Legendre L, Choquet Y, Kuras R, Loubéry S, Douchi D, Goldschmidt-Clermont M. A nucleus-encoded chloroplast protein regulated by iron availability governs expression of the photosystem I subunit PsaA in Chlamydomonas reinhardtii. Plant Physiol, 2015, 167(4): 1527-1540.

[51]

Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O. Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci, 2012, 31(1): 1-46.

[52]

Li X, Patena W, Fauser F, Jinkerson RE, Saroussi S, Meyer MT, Ivanova N, Robertson JM, Yue R, Zhang R, . A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis. Nat Genet, 2019, 51(4): 627-635.

[53]

Li S, Li X, Ho S-H. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: an updated review. Chemosphere, 2022, 291.

[54]

Loiselay C, Gumpel NJ, Girard-Bascou J, Watson AT, Purton S, Wollman F-A, Choquet Y. Molecular identification and function of cis- and trans-acting determinants for petA transcript stability in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol, 2008, 28(17): 5529-5542.

[55]

Loizeau K, Qu Y, Depp S, Fiechter V, Ruwe H, Lefebvre-Legendre L, Schmitz-Linneweber C, Goldschmidt-Clermont M. Small RNAs reveal two target sites of the RNA-maturation factor Mbb1 in the chloroplast of Chlamydomonas. Nucleic Acids Res, 2014, 42(5): 3286-3297.

[56]

Loppes R, Heindricks R. New arginine-requiring mutants in Chlamydomonas reinhardtii. Arch Microbiol, 1986, 143(4): 348-352.

[57]

Macedo-Osorio KS, Pérez-España VH, Garibay-Orijel C, Guzmán-Zapata D, Durán-Figueroa NV, Badillo-Corona JA. Intercistronic expression elements (IEE) from the chloroplast of Chlamydomonas reinhardtii can be used for the expression of foreign genes in synthetic operons. Plant Mol Biol, 2018, 98(4–5): 303-317.

[58]

Macedo-Osorio KS, Martinez-Antonio A, Badillo-Corona JA. Pas de Trois: an overview of penta-, tetra-, and octo-tricopeptide repeat proteins from Chlamydomonas reinhardtii and their role in chloroplast gene expression. Front Plant Sci, 2021, 12.

[59]

Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J, 2007, 5(3): 402-412.

[60]

Marín-Navarro J, Manuell AL, Wu J, Mayfield SP. Chloroplast translation regulation. Photosynth Res, 2007, 94(2–3): 359-374.

[61]

Martínez-Alberola F, Barreno E, Casano LM, Gasulla F, Molins A, Moya P, González-Hourcade M, del Campo EM. The chloroplast genome of the lichen-symbiont microalga Trebouxia sp. Tr9 (Trebouxiophyceae, Chlorophyta) shows short inverted repeats with a single gene and loss of the rps4 gene, which is encoded by the nucleus. J Phycol, 2020, 56(1): 170-184.

[62]

Mathieu-Rivet E, Lerouge P, Bardor M. Hippler M. Chlamydomonas reinhardtii: protein glycosylation and production of biopharmaceuticals. Chlamydomonas: biotechnology and biomedicine. Microbiology monographs, 2017, Cham: Springer, 45-72.

[63]

Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB. The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell, 2002, 14(11): 2659-2679.

[64]

Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA, 2003, 100(2): 438-442.

[65]

Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J. Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol, 2007, 18(2): 126-133.

[66]

Michelet L, Lefebvre-Legendre L, Burr SE, Rochaix J-D, Goldschmidt-Clermont M. Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. Plant Biotechnol J, 2011, 9(5): 565-574.

[67]

Mogk A, Schmidt R, Bukau B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol, 2007, 17(4): 165-172.

[68]

Murakami S, Kuehnle K, Stern DB. A spontaneous tRNA suppressor of a mutation in the Chlamydomonas reinhardtii nuclear MCD1 gene required for stability of the chloroplast petD mRNA. Nucleic Acids Res, 2005, 33(10): 3372-3380.

[69]

Muto M, Henry RE, Mayfield SP. Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast. BMC Biol, 2009, 9: 26.

[70]

Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res, 2000, 28(1): 292-292.

[71]

Newman SM, Boynton JE, Gillham NW, Randolph-Anderson BL, Johnson AM, Harris EH. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics, 1990, 126: 875-888.

[72]

NHC (2022) http://www.nhc.gov.cn/sps/s7892/202205/fc11e1c1a90d4b99b87e313cce938697.shtml. Accessed 11 May 2022

[73]

Ozawa S-I, Cavaiuolo M, Jarrige D, Kuras R, Rutgers M, Eberhard S, Drapier D, Wollman F-A, Choquet Y. The OPR protein MTHI1 controls the expression of two different subunits of ATP synthase CFo in Chlamydomonas reinhardtii. Plant Cell, 2020, 32(4): 1179-1203.

[74]

Pfalz J, Bayraktar OA, Prikryl J, Barkan A. Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J, 2009, 28(14): 2042-2052.

[75]

Pombert J-F, Lemieux C, Turmel M. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes. BMC Biol, 2006, 4: 3.

[76]

Prikryl J, Rojas M, Schuster G, Barkan A. Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc Natl Acad Sci USA, 2011, 108(1): 415-420.

[77]

Rahire M, Laroche F, Cerutti L, Rochaix J-D. Identification of an OPR protein involved in the translation initiation of the PsaB subunit of photosystem I. Plant J, 2012, 72(4): 652-661.

[78]

Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, . Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J, 2010, 8(6): 719-733.

[79]

Rasala BA, Muto M, Sullivan J, Mayfield SP. Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5′ untranslated region optimization. Plant Biotechnol J, 2011, 9(6): 674-683.

[80]

Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP. Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS ONE, 2012, 7.

[81]

Reifschneider O, Marx C, Jacobs J, Kollipara L, Sickmann A, Wolters D, Kück U. A ribonucleoprotein supercomplex involved in trans-splicing of organelle group II introns. J Biol Chem, 2017, 291(44): 23330-23342.

[82]

Remacle C, Cline S, Boutaffala L, Gabilly S, Larosa V, Barbieri MR, Coosemans N, Hamel PP. The ARG9 gene encodes the plastid-resident N-Acetyl ornithine aminotransferase in the green alga Chlamydomonas reinhardtii. Eukaryot Cell, 2009, 8(9): 1460-1463.

[83]

Ren Q, Wang Y-c, Lin Y, Zhen Z, Cui Y, Qin S. The extremely large chloroplast genome of the green alga Haematococcus pluvialis: genome structure, and comparative analysis. Algal Res, 2021, 56.

[84]

Robbens S, Derelle E, Ferraz C, Wuyts J, Moreau H, Van de Peer Y. The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction. Mol Biol Evol, 2007, 24(4): 956-968.

[85]

Rochaix JD, Surzycki R, Ramundo S. Maliga P. Tools for regulated gene expression in the chloroplast of Chlamydomonas. Chloroplast biotechnology. Methods in molecular biology, 2014, Totowa: Humana Press, 413-424.

[86]

Salomé PA, Merchant SS. A series of fortunate events: introducing Chlamydomonas as a reference organism. Plant Cell, 2019, 31(8): 1682-1707.

[87]

Sandoval-Vargas JM, Macedo-Osorio KS, Durán-Figueroa NV, Garibay-Orijel C, Badillo-Corona JA. Chloroplast engineering of Chlamydomonas reinhardtii to use phosphite as phosphorus source. Algal Res, 2018, 33: 291-297.

[88]

Sandoval-Vargas JM, Jiménez-Clemente LA, Macedo-Osorio KS, Oliver-Salvador MC, Fernández-Linares LC, Durán-Figueroa NV, Badillo-Corona JA. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii. Mol Biotechnol, 2019, 61(6): 461-468.

[89]

Shahar N, Elman T, Williams-Carrier R, Ben-Zvi O, Yacoby I, Barkan A. Use of plant chloroplast RNA-binding proteins as orthogonal activators of chloroplast transgenes in the green alga Chlamydomonas reinhardtii. Algal Res, 2021, 60.

[90]

Shamriz S, Ofoghi H. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnol Genet Eng, 2016, 32(1–2): 92-106.

[91]

Shamriz S, Ofoghi H. Expression of recombinant PfCelTOS antigen in the chloroplast of Chlamydomonas reinhardtii and its potential use in detection of Malaria. Mol Biotechnol, 2019, 61(2): 102-110.

[92]

Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev, 1993, 57(1): 138-163.

[93]

Shi Q, Chen C, Zhang W, Wu P, Sun M, Wu H, Wu H, Fu P, Fan J. Transgenic eukaryotic microalgae as green factories: providing new ideas for the production of biologically active substances. J Appl Phycol, 2021, 33(2): 705-728.

[94]

Smith DR, Lee RW, Cushman JC, Magnuson JK, Tran D, Polle JEW. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA. BMC Plant Biol, 2010, 10: 83.

[95]

Stern DB, Goldschmidt-Clermont M, Hanson MR. Chloroplast RNA metabolism. Annu Rev Plant Biol, 2010, 61: 125-155.

[96]

Stoffels L, Taunt HN, Charalambous B, Purton S. Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J, 2017, 15(9): 1130-1140.

[97]

Surzycki R, Cournac L, Peltiert G, Rochaix J-D. Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci USA, 2007, 104(44): 17548-17553.

[98]

Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix J-D, Ajam T, Surzycki S. Factors effecting expression of vaccines in microalgae. Biologicals, 2009, 37(3): 133-138.

[99]

Tasaki T, Sriram SM, Park KS, Kwon YT. The N-End rule pathway. Annu Rev Biochem, 2012, 81: 261-289.

[100]

Taunt HN, Stoffels L, Purton S. Green biologics: the algal chloroplast as a platform for making biopharmaceuticals. Bioengineered, 2018, 9(1): 48-54.

[101]

Tourasse NJ, Choquet Y, Vallon O. PPR proteins of green algae. RNA Biol, 2013, 10(9): 1526-1542.

[102]

Tran NT, Kaldenhoff R. Achievements and challenges of genetic engineering of the model green alga Chlamydomonas reinhardtii. Algal Res, 2020, 50.

[103]

Turmel M, Otis C, Lemieux C. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci USA, 1999, 96(18): 10248-10253.

[104]

Turmel M, Otis C, Lemieux C. The chloroplast genomes of the green algae Pedinomonas minor, Parachlorella kessleri, and Oocystis solitaria Reveal a shared ancestry between the Pedinomonadales and Chlorellales. Mol Biol Evol, 2009, 26(10): 2317-2331.

[105]

Vaistij FE, Goldschmidt-Clermont M, Wostrikoff K, Rochaix J-D. Stability determinants in the chloroplast psbB/T/H mRNAs of Chlamydomonas reinhardtii. Plant J, 2000, 21(5): 469-482.

[106]

Vaistij FE, Boudreau E, Lemaire SD, Goldschmidt-Clermont M, Rochaix J-D. Characterization of Mbb1, a nucleus-encoded tetratricopeptide-like repeat protein required for expression of the chloroplast psbB/psbT/psbH gene cluster in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA, 2000, 97(26): 14813-14818.

[107]

Viola S, Cavaiuolo M, Drapier D, Eberhard S, Vallon O, Wollman F-A, Choquet Y. MDA1, a nucleus-encoded factor involved in the stabilization and processing of the atpA transcript in the chloroplast of Chlamydomonas. Plant J, 2019, 98(6): 1033-1047.

[108]

Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, . Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA, 1997, 94(11): 5967-5972.

[109]

Wang F, Johnson X, Cavaiuolo M, Bohne A-V, Nickelsen J, Vallon O. Two Chlamydomonas OPR proteins stabilize chloroplast mRNAs encoding small subunits of photosystem II and cytochrome b6f. Plant J, 2015, 82(5): 861-873.

[110]

Wannathong T, Waterhouse JC, Young REB, Economou CK, Purton S. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biot, 2016, 100(12): 5467-5477.

[111]

Yakun Z, Xianming S, Zhongming Z. High-frequency electroporation and expression of human interleukin 4 gene in Chlamydomonasreinhardtii chloroplast. J Huazhong Agric Univ, 2006, 2006(02): 110-116.

[112]

Yoo B-C, Yadav NS, Orozco EM Jr, Sakai H. Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ, 2020, 8.

[113]

Young R, Purton S. CITRIC: cold-inducible translational readthrough in the chloroplast of Chlamydomonas reinhardtii using a novel temperature-sensitive transfer RNA. Microb Cell Fact, 2018, 17: 186.

[114]

Zou Y, Bozhkov PV. Chlamydomonas proteases: classification, phylogeny, and molecular mechanisms. J Exp Bot, 2021, 72(22): 7680-7693.

Funding

National Key Research and Development Project of China(2019YFA0906300)

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/