Effects of bioelectricity generation processes on methane emission and bacterial community in wetland and carbon fate analysis

Shentan Liu , Hongpu Xue , Yue Wang , Zuo Wang , Xiaojuan Feng , Sang-Hyun Pyo

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 69

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 69 DOI: 10.1186/s40643-022-00558-8
Research

Effects of bioelectricity generation processes on methane emission and bacterial community in wetland and carbon fate analysis

Author information +
History +
PDF

Abstract

1.

Effects of different operating conditions on CH4 emission.

2.

The competitive relationship between electricigens and methanogens was analysed.

3.

The morphology and content of C element in different phases were discussed.

4.

The bacterial population structure under different conditions was analysed.

5.

The mechanism of CH4 emission from CW–MFC was described in detail.

Keywords

Constructed wetland / Microbial fuel cell / Greenhouse gas / Methane / Fate pathway

Cite this article

Download citation ▾
Shentan Liu, Hongpu Xue, Yue Wang, Zuo Wang, Xiaojuan Feng, Sang-Hyun Pyo. Effects of bioelectricity generation processes on methane emission and bacterial community in wetland and carbon fate analysis. Bioresources and Bioprocessing, 2022, 9(1): 69 DOI:10.1186/s40643-022-00558-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science, 2010, 327(5963): 322-325.

[2]

Catal T, Kul A, Atalay VE, Bermek H, Ozilhan S, Tarhan N. Efficacy of microbial fuel cells for sensing of cocaine metabolites in urine-based wastewater. J Power Sources, 2019, 414: 1-7.

[3]

Chen B, Zhao M, Yan H, Yang R, Li H-C, Hammond DE. Tracing source and transformation of carbon in an epikarst spring-pond system by dual carbon isotopes (13C–14C): evidence of dissolved CO2 uptake as a carbon sink. J Hydrol, 2021, 593.

[4]

Chen MY, Fang Z, Xu LX, Zhou D, Yang XJ, Zhu HJ, Yong YC. Enhancement of photo-driven biomethanation under visible light by nano-engineering of rhodopseudomonas palustris. Bioresour Bioprocess, 2021, 8: 30.

[5]

Dai M, Zhou G, Ng HY, Zhang J, Wang Y, Li N, Qi X, Miao M, Liu Q, Kong Q. Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress. J Environ Manage, 2019, 250.

[6]

de la Varga D, Ruiz I, Alvarez JA, Soto M. Methane and carbon dioxide emissions from constructed wetlands receiving anaerobically pretreated sewage. Sci Total Environ, 2015, 538: 824-833.

[7]

Degrenne N, Buret F, Allard B, Bevilacqua P. Electrical energy generation from a large number of microbial fuel cells operating at maximum power point electrical load. J Power Sources, 2012, 205: 188-193.

[8]

Feng L, He S, Yu H, Zhang J, Guo Z, Wei L, Wu H. A novel plant-girdling study in constructed wetland microcosms: insight into the role of plants in oxygen and greenhouse gas transport. Chem Eng J, 2022, 431.

[9]

Flores-Rodriguez C, Min B. Enrichment of specific microbial communities by optimum applied voltages for enhanced methane production by microbial electrosynthesis in anaerobic digestion. Bioresour Technol, 2020, 300.

[10]

Galand PE, Fritze H, Conrad R, Yrjala K. Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Appl Environ Microbiol, 2005, 71(4): 2195-2198.

[11]

Gupta K, Kumar R, Baruah KK, Hazarika S, Karmakar S, Bordoloi N. Greenhouse gas emission from rice fields: a review from Indian context. Environ Sci Pollut Res, 2021, 28(24): 30551-30572.

[12]

Holmes DE, Bond DR, Lovley DR. Electron transfer by desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol, 2004, 70(2): 1234-1237.

[13]

Kao-Kniffin J, Zhu B. A microbial link between elevated CO2 and methane emissions that is plant species-specific. Microb Ecol, 2013, 66(3): 621-629.

[14]

Kaur A, Boghani HC, Michie I, Dinsdale RM, Guwy AJ, Premier GC. Inhibition of methane production in microbial fuel cells: operating strategies which select electrogens over methanogens. Bioresour Technol, 2014, 173: 75-81.

[15]

Khawdas W, Watanabe K, Karatani H, Aso Y, Tanaka T, Ohara H. Direct electron transfer of cellulomonas fimi and microbial fuel cells fueled by cellulose. J Biosci Bioeng, 2019, 128(5): 593-598.

[16]

Liu S, Song H, Li X, Yang F. Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. Int J Photoenergy, 2013, 2013.

[17]

Liu S, Song H, Wei S, Yang F, Li X. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland—microbial fuel cell systems. Bioresour Technol, 2014, 166: 575-583.

[18]

Liu S, Feng X, Li X. Bioelectrochemical approach for control of methane emission from wetlands. Bioresour Technol, 2017, 241: 812-820.

[19]

Liu S, Qiu D, Lu F, Wang Y, Wang Z, Feng X, Pyo S-H. Acoruscalamus l. Constructed wetland-microbial fuel cell for Cr(VI)-containing wastewater treatment and bioelectricity production. J Environ Chem Eng, 2022, 10(3): 107801.

[20]

Lopez D, Sepulveda-Mardones M, Ruiz-Tagle N, Sossa K, Uggetti E, Vidal G. Potential methane production and molecular characterization of bacterial and archaeal communities in a horizontal subsurface flow constructed wetland under cold and warm seasons. Sci Total Environ, 2019, 648: 1042-1051.

[21]

Lopez-Pacheco IY, Rodas-Zuluaga LI, Fuentes-Tristan S, Castillo-Zacarias C, Sosa-Hernandez JE, Barcelo D, Iqbal HMN, Parra-Saldivar R. Phycocapture of CO2 as an option to reduce greenhouse gases in cities: carbon sinks in urban spaces. J CO2 Util, 2021, 53: 101704.

[22]

Lu L, Xing D, Ren ZJ. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresour Technol, 2015, 195: 115-121.

[23]

Md Khudzari J, Gariépy Y, Kurian J, Tartakovsky B, Raghavan GSV. Effects of biochar anodes in rice plant microbial fuel cells on the production of bioelectricity, biomass, and methane. Biochem Eng J, 2019, 141: 190-199.

[24]

Mielcarek A, Rodziewicz J, Janczukowicz W, Dulski T, Ciesielski S, Thornton A. Denitrification aided by waste beer in anaerobic sequencing batch biofilm reactor (AnSBBR). Ecol Eng, 2016, 95: 384-389.

[25]

Mohammed AA, Mutar ZH, Al-Baldawi IA. Alternanthera spp. based-phytoremediation for the removal of acetaminophen and methylparaben at mesocosm-scale constructed wetlands. Heliyon, 2021, 7(11): e08403.

[26]

Nandy A, Sharma M, Venkatesan SV, Taylor N, Gieg L, Thangadurai V. Comparative evaluation of coated and non-coated carbon electrodes in a microbial fuel cell for treatment of municipal sludge. Energies, 2019, 12(6): 1034.

[27]

Nikhil GN, Krishna Chaitanya DNS, Srikanth S, Swamy YV, Venkata Mohan S. Applied resistance for power generation and energy distribution in microbial fuel cells with rationale for maximum power point. Chem Eng J, 2018, 335: 267-274.

[28]

Oshita K, Okumura T, Takaoka M, Fujimori T, Appels L, Dewil R. Methane and nitrous oxide emissions following anaerobic digestion of sludge in japanese sewage treatment facilities. Bioresour Technol, 2014, 171: 175-181.

[29]

Pangala SR, Reay DS, Heal KV. Mitigation of methane emissions from constructed farm wetlands. Chemosphere, 2010, 78(5): 493-499.

[30]

Pasternak G, Greenman J, Ieropoulos I. Dynamic evolution of anodic biofilm when maturing under different external resistive loads in microbial fuel cells. Electrochemical perspective. J Power Sources, 2018, 400: 392-401.

[31]

Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Höfte M, Verstraete W, Rabaey K. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol, 2008, 77(5): 1119-1129.

[32]

Picioreanu C, Head IM, Katuri KP, van Loosdrecht MCM, Scott K. A computational model for biofilm-based microbial fuel cells. Water Res, 2007, 41(13): 2921-2940.

[33]

Picioreanu C, van Loosdrecht MCM, Katuri KP, Scott K, Head IM. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Sci Technol, 2008, 57(7): 965-971.

[34]

Pinto RP, Srinivasan B, Guiot SR, Tartakovsky B. The effect of real-time external resistance optimization on microbial fuel cell performance. Water Res, 2011, 45(4): 1571-1578.

[35]

Puengrang P, Suraraksa B, Prommeenate P, Boonapatcharoen N, Cheevadhanarak S, Tanticharoen M, Kusonmano K. Diverse microbial community profiles of propionate-degrading cultures derived from different sludge sources of anaerobic wastewater treatment plants. Microorganisms, 2020, 8(2): 277.

[36]

Rahmani AR, Navidjouy N, Rahimnejad M, Alizadeh S, Samarghandi MR, Nematollahi D. Effect of different concentrations of substrate in microbial fuel cells toward bioenergy recovery and simultaneous wastewater treatment. Environ Technol, 2022, 43(1): 1-9.

[37]

Riddick SN, Mauzerall DL, Celia M, Harris NRP, Allen G, Pitt J, Staunton-Sykes J, Forster GL, Kang M, Lowry D, Nisbet EG, Manning AJ. Methane emissions from oil and gas platforms in the north sea. Atmos Chem Phys, 2019, 19(15): 9787-9796.

[38]

Rismani-Yazdi H, Carver SM, Christy AD, Yu Z, Bibby K, Peccia J, Tuovinen OH. Suppression of methanogenesis in cellulose-fed microbial fuel cells in relation to performance, metabolite formation, and microbial population. Bioresour Technol, 2013, 129: 281-288.

[39]

Schamphelaire LD, Bossche LVd, Dang HS, Höfte M, Boon N, Rabaey K, Verstraete W. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol, 2008, 42(8): 3053-3058.

[40]

Si I, Hotta Y, Watanabe K. Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci Biotechnol Biochem, 2008, 72(2): 286-294.

[41]

Silvey C, Jarecke KM, Hopfensperger K, Loecke TD, Burgin AJ. Plant species and hydrology as controls on constructed wetland methane fluxes. Soil Sci Soc Am J, 2019, 83(3): 848-855.

[42]

Sun JC, Zhang L, Loh KC. Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes. Bioresour Bioprocess, 2021, 8(1): 68.

[43]

Takeuchi Y, Khawdas W, Aso Y, Ohara H. Microbial fuel cells using Cellulomonas spp. With cellulose as fuel. J Biosci Bioeng, 2017, 123(3): 358-363.

[44]

Toczylowska-Maminska R, Szymona K, Krol P, Gliniewicz K, Pielech-Przybylska K, Kloch M, Logan BE. Evolving microbial communities in cellulose-fed microbial fuel cell. Energies, 2018, 11(1): 124.

[45]

Valdez-Hernández M, Acquaroli LN, Vázquez-Castillo J, González-Pérez O, Heredia-Lozano JC, Castillo-Atoche A, Sosa-Vargas L, Osorio-de-la-Rosa E. Plant/soil-microbial fuel cell operation effects in the biological activity of bioelectrochemical systems. Energy Sources Part A, 2022, 44(2): 2715-2729.

[46]

Waldo NB, Hunt BK, Fadely EC, Moran JJ, Neumann RB. Plant root exudates increase methane emissions through direct and indirect pathways. Biogeochemistry, 2019, 145(1–2): 213-234.

[47]

Wang H, Ren ZJ. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv, 2013, 31(8): 1796-1807.

[48]

Wang ZQ, Gu DJ, Beebout SS, Zhang H, Liu LJ, Yang JC, Zhang JH. Effect of irrigation regime on grain yield, water productivity, and methane emissions in dry direct-seeded rice grown in raised beds with wheat straw incorporation. Crop J, 2018, 6(5): 495-508.

[49]

Wu H, Zhang J, Ngo HH, Guo W, Liang S. Evaluating the sustainability of free water surface flow constructed wetlands: methane and nitrous oxide emissions. J Cleaner Prod, 2017, 147: 152-156.

[50]

Xu P, Zhou W, Jiang MD, Shaaban M, Zhou MH, Zhu B, Ren XJ, Jiang YB, Hu RG. Conversion of winter flooded rice paddy planting to rice-wheat rotation decreased methane emissions during the rice-growing seasons. Soil Tillage Res, 2020, 198.

[51]

Xu F, Sun R, Wang H, Wang Y, Liu Y, Jin X, Zhao Z, Zhang Y, Cai W, Wang C, Kong Q. Improving the outcomes from electroactive constructed wetlands by mixing wastewaters from different beverage-processing industries. Chemosphere, 2021, 283.

[52]

Xu H, Song H-L, Singh RP, Yang Y-L, Xu J-Y, Yang X-L. Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell. Bioresour Technol, 2021, 320.

[53]

Yu T, Chen YG. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: a review. Sci Total Environ, 2019, 655: 865-879.

[54]

Zhang J, Wu H, Hu Z, Liang S, Fan J. Examination of oxygen release from plants in constructed wetlands in different stages of wetland plant life cycle. Environ Sci Pollut Res, 2014, 21(16): 9709-9716.

[55]

Zhang C, Liang P, Yang X, Jiang Y, Bian Y, Chen C, Zhang X, Huang X. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens Bioelectron, 2016, 81: 32-38.

[56]

Zhang ZY, Song Y, Zheng SJ, Zhen GY, Lu XQ, Takuro K, Xu KQ, Bakonyi P. Electro-conversion of carbon dioxide (CO2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: the current status and future perspective. Bioresour Technol, 2019, 279: 339-349.

[57]

Zhang C, Brodylo D, Sirianni MJ, Li T, Comas X, Douglas TA, Starr G. Mapping co2 fluxes of cypress swamp and marshes in the greater everglades using eddy covariance measurements and landsat data. Remote Sens Environ, 2021, 262.

[58]

Zhang K, Wang JT, Liu XL, Fu XY, Luo HB, Li M, Jiang B, Chen J, Chen W, Huang B, Fan LQ, Cheng L, An XC, Chen FH, Zhang XH. Methane emissions and methanogenic community investigation from constructed wetlands in chengdu city. Urban Clim, 2021, 39.

Funding

National Natural Science Foundation of China(21806128)

Natural Science Foundation of Shaanxi Province(2019JQ-300)

Postdoctoral Research Foundation of China(2019M653701)

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/