From pomiculture waste to biotechnological raw material: efficient transformation using ligninosomes and cellulosomes from Pleurotus spp.

Jasmina Ćilerdžić , Milica Galić , Mirjana Stajić

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 66

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 66 DOI: 10.1186/s40643-022-00555-x
Research

From pomiculture waste to biotechnological raw material: efficient transformation using ligninosomes and cellulosomes from Pleurotus spp.

Author information +
History +
PDF

Abstract

The goal of this study was to determine the capacity of Pleurotus spp. lignocellulosome to transform frequent pomiculture residues (grapevine-, plum-, and raspberry sawdust) into raw materials for biotechnological processes. All three lignocellulosics induced the synthesis of ligninolytic and cellulolytic enzymes in the tested species. Laccase was dominant in the ligninolytic cocktail, with a maximum activity of 40,494.88 U L−1 observed after the cultivation of P. pulmonarius on grapevine sawdust. Grapevine sawdust also proved to be the optimal substrate for the synthesis of versatile peroxidases especially in P. eryngii (1010.10 U L−1), while raspberry sawdust favored the production of Mn-dependent peroxidase in P. pulmonarius (479.17 U L−1). P. pulmonarius was the dominant cellulolytic agent and raspberry sawdust was optimal for the synthesis of xylanases, and endo- and exo-cellulases (15,746.35 U L−1, 9741.56 U L−1, and 836.62 U L−1), while grapevine sawdust mostly induced β-glucosidase activity (166.11 U L−1). The degree of residues delignification was more substrate- than species-dependent, ranging between 6.44 and 23.72% after the fermentation of grapevine and raspberry sawdust with P. pulmonarius. On the other hand, the lowest level of cellulose consumption was also observed on raspberry sawdust after the cultivation of P. eryngii, which together with high delignification also induced the highest selectivity index (1.27). The obtained results show the exceptional lignocellulolytic potential of Pleurotus spp. enzyme cocktails which opens up many possibilities for their application in numerous biotechnological processes.

Keywords

Cellulolytic enzymes / Ligninolytic enzymes / Pleurotus spp. / Pomiculture residues

Cite this article

Download citation ▾
Jasmina Ćilerdžić, Milica Galić, Mirjana Stajić. From pomiculture waste to biotechnological raw material: efficient transformation using ligninosomes and cellulosomes from Pleurotus spp.. Bioresources and Bioprocessing, 2022, 9(1): 66 DOI:10.1186/s40643-022-00555-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adebayo EA, Martínez-Carrera D. Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass. Afr J Biotechnol, 2015, 14: 52-67.

[2]

Akpinar M, Urek RO. Extracellular ligninolytic enzymes production by Pleurotus eryngii on agroindustrial wastes. Prep Biochem Biotech, 2014, 44: 772-781.

[3]

Alborés S, Pianzzola MJ, Soubes M, Cerdeiras MP. Biodegradation of agroindustrial wastes by Pleurotus spp. for its use as ruminal feed. Electron J Biotechnol, 2006, 9: 215-220.

[4]

Arora DS, Gill PK. Laccase production by some white rot fungi under different nutritional conditions. Biores Technol, 2000, 73: 283-285.

[5]

Bernfeld P. De Murray P. Amylases, α and β. Methods in enzymology, 1955, San Diego: Deutcher Acad. Press INC, 149-158.

[6]

Bettin F, Montanari Q, Calloni R, Gaio TA, Silveira MM, Dillon AJ. Production of laccases in submerged process by Pleurotus sajor-caju PS-2001 in relation to carbon and organic nitrogen sources, antifoams and Tween 80. J Ind Microbiol Biot, 2009, 36: 1-9.

[7]

Bhardwaj N, Kumar B, Agrawal K, Verma P. Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess, 2021, 8: 95.

[8]

Bilal M, Asgher M, Iqbal HMN, Hu H. Biotransformation of lignocellulosic materials into value-added products—a review. Int J Biol Macromol, 2017, 98: 447-458.

[9]

Bimestre TA, Mantovani JA, Canettieri EV, Tuna CE. Hydrodynamic cavitation for lignocellulosic biomass pretreatment: a review of recent developments and future perspectives. Bioresour Bioprocess, 2022, 9: 7.

[10]

Ćilerdžić J, Stajić M, Vukojević J. Degradation of wheat straw and oak sawdust by Ganoderma applanatum. Int Biodeter Biodegr, 2016, 114: 39-44.

[11]

Ćilerdžić J, Stajić M, Vukojević J. Activity of Mn-oxidizing peroxidases of Ganoderma lucidum depending on cultivation conditions. BioResources, 2016, 11: 95-104.

[12]

Ćilerdžić J, Galić M, Vukojević J, Brčeski I, Stajić M. Potential of selected fungal species to degrade wheat straw, the most abundant plant raw material in Europe. BMC Plant Biol, 2017, 17: 75-81.

[13]

Ćilerdžić J, Galić M, Ivanović Ž, Brčeski I, Vukojević J, Stajić M. Stimulation of wood degradation by Daedaleopsis confragosa and D. tricolor. App Biochem Biotech, 2018, 187: 1371-1383.

[14]

Collins PJ, Dobson A. Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microb, 1997, 63: 3444-3450.

[15]

Das N, Chakraborty TK, Mukherjee M. Purification and characterization of a growth regulating laccase from Pleurotus florida. J Basic Microbiol, 2001, 41: 261-267.

[16]

de Freitas EN, Bubna GA, Brugnari T, Kato CG, Nolli M, Rauen T, Muniz Moreira RFP, Peralta PA, Bracht A, de Souza CGM, Peralta PA. Removal of bisphenol A by laccases from Pleurotus ostreatus and Pleurotus pulmonarius and evaluation of ecotoxicity of degradation products. Chem Eng J, 2017, 330: 1361-1369.

[17]

Dong XQ, Yang JS, Zhu N, Wang ET, Yuan HL. Sugarcane bagasse degradation and characterization of three white-rot fungi. Biores Technol, 2013, 131: 443-451.

[18]

Ekundayo FO, Ekundayo EA, Ayodele BB. Comparative studies on glucanases and β-glucosidase activities of Pleurotus ostreatus and P. pulmonarius in solid state fermentation. Mycosphere, 2017, 8: 1051-1059.

[19]

Elisashvili V, Penninckx M, Kachlishvili E, Tsiklauri N, Metreveli E, Kharziani T, Kvesitadze G. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and soil-state fermentation of lignocellulosic wastes of different composition. Biores Technol, 2008, 99: 457-462.

[20]

Fang W, Zhang P, Zhang X, Zhu X, van Lier JB, Spanjers H. White rot fungi pretreatment to advance volatile fatty acid production from solid-state fermentation of solid digestate: efficiency and mechanisms. Energy, 2018, 162: 534-541.

[21]

Fenice M, Giovannozzi Sermanni G, Federici F, D’Annibale A. Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill waste water-based media. J Biotechnol, 2003, 100: 77-85.

[22]

Ghaffar SH, Fan M, McVicar B. Bioengineering for utilization and bioconversion of straw biomass into bio-products. Ind Crop Prod, 2015, 77: 262-274.

[23]

Goyal M, Soni G. Production and characterization of cellulolytic enzymes by Pleurotus florida. Afr J Microbiol Res, 2011, 5(10): 1131-1136.

[24]

Grujić M, Dojnov B, Potočnik I, Duduk B, Vujčić Z. Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation. Int Biodeter Biodegr, 2015, 104: 290-298.

[25]

Hammel EH. Cadisah G, Giller K. Fungal degradation of lignin. Driven by nature: plant litter quality and decomposition, 1997, Wallingford: CAB International, 33-45.

[26]

Inácio FD, Ferreira RO, De Araujo CAV, Peralta RM, De Souza CGM. Production of enzymes and biotransformation of orange waste by oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. Adv Microbiol, 2015, 5: 1-8.

[27]

Jiang M, Ten Z, Ding S. Decolorization of synthetic dyes by crude and purified laccases from Coprinus comatus grown under different cultures: the role of major isoenzyme in dyes decolorization. App Biochem Biotech, 2013, 169: 660-672.

[28]

Jørgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bior, 2007, 1: 119-134.

[29]

Kirk TK, Obst JR. Colowick SP, Kaplan NO. Lignin determination. Methods in Enzymology 161, 1988, San Diego: Academic Press Inc., 87-101.

[30]

Knežević A, Milovanović I, Stajić M, Lončar N, Brčeski I, Vukojević J, Ćilerdžić J. Lignin degradation by selected fungal species. Biores Technol, 2013, 138: 117-123.

[31]

Knežević A, Stajić M, Vukojević J, Milovanović I. The effect of trace elements on wheat straw degradation by Trametes gibbosa. Int Biodeter Biodegr, 2014, 96: 152-156.

[32]

Knežević A, Stajić M, Jovanović VM, Kovačević V, Ćilerdžić J, Milovanović I, Vukojević J. Induction of wheat straw delignification by Trametes species. Sci Rep, 2016, 6: 1-12.

[33]

Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Woitas-Wasilewski M, Cho NS, Hotrichter M, Rogalski J. Biodegradation by white rot fungi. Fungal Genet Biol, 1999, 27: 175-185.

[34]

Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol R, 2002, 66(3): 506-577.

[35]

Marques de Souza CG, Peralta RM. Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium. J Basic Microb, 2003, 43: 278-286.

[36]

Muñoz C, Guillen F, Martínez TA, Martínez JM. Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties and participation in activation of molecular oxygen and Mn2+ oxidation. Appl Environ Microb, 1997, 63: 2166-2174.

[37]

Muñoz C, Guillen F, Martínez TA, Martínez JM. Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol, 1997, 34: 1-5.

[38]

Mustafa AM, Poulsen TG, Sheng K. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl Energ, 2016, 180: 661-671.

[39]

Palma C, Lloret L, Sepúlveda L, Contreras E. Production of versatile peroxidase from Pleurotus eryngii by solid-state fermentation using agricultural residues and evaluation of its catalytic properties. Prep Biochem Biotech, 2016, 46: 200-207.

[40]

Palmieri G, Giardna P, Marzullo L, Desiderio B, Nitti B, Cannio R, Sannia G. Stability and activity of phenol oxidase from lignolytic fungus Pleurotus ostreatus. Appl Microbiol Biot, 1993, 39: 632-636.

[41]

Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G. A novel white laccase from Pleurotus ostreatus. J Biol Chem, 1997, 272: 31301-31307.

[42]

Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol, 2000, 66: 920-924.

[43]

Paramjeet S, Manasa P, Korrapati N. Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. Biocatal Agric Biotechnol, 2018, 14: 57-71.

[44]

Piñeros-Castro Y, Velásquez-Lozano M. Biodegradation kinetics of oil palm empty fruit bunches by white rot fungi. Int Biodeter Biodegr, 2014, 91: 24-28.

[45]

Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK. Bioethanol production from waste lignocelluloses: a review on microbial degradation potential. Chemosphere, 2019, 231: 588-606.

[46]

Richard T. The Effect of lignin on biodegradability, 1996, Ithaca: Cornell Waste Management Institute, 14853-15601.

[47]

Saha BC, Qureshi N, Gregory J, Kennedy GJ, Michael A, Cotta MA. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeter Biodegr, 2016, 109: 29-35.

[48]

Salmones D, Mata G, Waliszewski KN. Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation. Biores Technol, 2005, 96: 537-544.

[49]

Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv, 2009, 27: 185-194.

[50]

Sannia G, Giardina P, Luna M, Rossi M, Buonocore V. Laccase from Pleurotus ostreatus. Biotechnol Lett, 1986, 8: 797-800.

[51]

Sekan AS, Myronycheva OS, Karlsson O, Gryganskyi AP, Blume Y. Green potential of Pleurotus spp. in biotechnology. PeerJ, 2019, 7: e6664.

[52]

Sherief AA, El-Tanash AB, Temraz AM. Lignocellulolytic enzymes and substrate utilization during growth and fruiting of Pleurotus ostreatus on some solid wastes. J Environ Sci Technol, 2010, 3: 18-34.

[53]

Silva CMMS, Melo SI, Oliveira RP. Ligninolytic enzyme production by Ganoderma spp. Enzyme Microb Tech, 2005, 37: 324-329.

[54]

Simonić J, Vukojević J, Stajić M, Glamočlija J. Intraspecies diversity within Ganoderma lucidum in the production of laccase and Mn-oxidizing peroxidases during plant residues fermentation. App Biochem Biotech, 2010, 162: 408-415.

[55]

Songulashvili G, Elisashvili V, Wasser S, Nevo E, Hadar Y. Laccase and manganese peroxidase activities in Phellinus robustus and Ganoderma adspersum grown on food industry wastes in submerged fermentation. Biotechnol Lett, 2006, 28: 1425-1429.

[56]

Souza TM, Merritt CS, Reddy CA. Lignin-modifying enzymes of the white-rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol, 1999, 65: 5307-5313.

[57]

Stajić M, Persky L, Cohen E, Hadar Y, Brceski I, Wasser SP, Nevo E. Screening of laccase, manganese peroxidase, and versatile peroxidase activities of the genus Pleurotus in media with some raw plant materials as carbon sources. Appl Biochem Biotechnol, 2004, 117: 155-164.

[58]

Stajić M, Persky L, Friesem D, Hadar Y, Wasser SP, Nevo E, Vukojević J. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme Microb Tech, 2006, 38: 65-73.

[59]

Stajić M, Kukavica B, Vukojević J, Simonić J, Veljović-Jovanović S, Duletić-Laušević S. Wheat straw conversion by enzymatic system of Ganoderma lucidum. BioResources, 2010, 5: 2362-2373.

[60]

Stajić M, Ćilerdžić J, Galić M, Ivanović Ž, Vukojević J. Lignocellulose degradation by Daedaleopsis confragosa and D. tricolor. BioResources, 2017, 12: 7195-7204.

[61]

Van Soest PV, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 1991, 74: 3583-3597.

[62]

Wyman V, Henríquez J, Palma C, Carvajal A. Lignocellulosic waste valorisation strategy through enzyme and biogas production. Biores Technol, 2018, 247: 402-411.

[63]

Xie C, Luo W, Li Z, Yan L, Zhu Z, Wang J, Hu Z, Peng Y. Secretome analysis of Pleurotus eryngii reveals enzymatic composition for ramie stalk degradation. Electrophoresis, 2016, 37: 310-320.

[64]

Yoon LW, Ang TN, Ngoh GC, Chua ASM. Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenerg, 2014, 67: 319-338.

[65]

Youn HD, Hah YC, Kang SO. Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiol Lett, 1995, 132: 183-188.

[66]

Yuan X, Tian G, Zhao Y, Zhao L, Wang H, Ng TB. Biochemical characteristics of three laccase isoforms from the basidiomycete Pleurotus nebrodensis. Molecules, 2016, 21: 203.

[67]

Zhang R, Li X, Fadel JG. Oyster mushroom cultivation with rice and wheat straw. Bioresource Technol, 2002, 82: 277-284.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/