Microbial synthesis of long-chain α-alkenes from methanol by engineering Pichia pastoris

Peng Cai , Yunxia Li , Xiaoxin Zhai , Lun Yao , Xiaojun Ma , Lingyun Jia , Yongjin J. Zhou

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 58

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 58 DOI: 10.1186/s40643-022-00551-1
Research

Microbial synthesis of long-chain α-alkenes from methanol by engineering Pichia pastoris

Author information +
History +
PDF

Abstract

α-Alkenes (terminal alkenes) are important fuel and platform chemicals that are mainly produced from petroleum. Microbial synthesis might provide a sustainable approach for α-alkenes. In this work, we engineered the methylotrophic yeast Pichia pastoris to produce long-chain (C15:1, C17:1 and C17:2) α-alkenes via a decarboxylation of fatty acids. Combinatorial engineering, including enzyme selection, expression optimization and peroxisomal compartmentalization, enabled the production of 1.6 mg/L α-alkenes from sole methanol. This study represents the first case of α-alkene biosynthesis from methanol and also provides a reference for the construction of methanol microbial cell factories of other high-value chemicals.

Keywords

Methylotrophic yeast / Pichia pastoris / α-Alkenes / Methanol biorefinery / Cofactor engineering / Peroxisome

Cite this article

Download citation ▾
Peng Cai, Yunxia Li, Xiaoxin Zhai, Lun Yao, Xiaojun Ma, Lingyun Jia, Yongjin J. Zhou. Microbial synthesis of long-chain α-alkenes from methanol by engineering Pichia pastoris. Bioresources and Bioprocessing, 2022, 9(1): 58 DOI:10.1186/s40643-022-00551-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai P, Gao J, Zhou YJ. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications. Microb Cell Fact, 2019, 18(1): 63.

[2]

Cai P, Duan X, Wu X, Gao L, Ye M, Zhou YJ. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris. Nucleic Acids Res, 2021, 49(13): 7791-7805.

[3]

Chen B, Lee DY, Chang MW. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metab Eng, 2015, 31: 53-61.

[4]

Dennig A, Kuhn M, Tassoti S, Thiessenhusen A, Gilch S, Bulter T, Haas T, Hall M, Faber K. Oxidative decarboxylation of short-chain fatty acids to 1-alkenes. Angew Chem Int Ed Engl, 2015, 54(30): 8819-8822.

[5]

Gao J, Gao N, Zhai X, Zhou YJ. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha. iScience, 2021, 24(3): 102168.

[6]

Guo Y, Liao Y, Wang J, Ma C, Qin J, Feng J, Li Y, Wang X, Chen K. Methylotrophy of Pichia pastoris: current advances, applications, and future perspectives for methanol-based biomanufacturing. ACS Sustain Chem Eng, 2022, 10(5): 1741-1752.

[7]

Hammer SK, Avalos JL. Harnessing yeast organelles for metabolic engineering. Nat Chem Biol, 2017, 13: 823-832.

[8]

Jiang Y, Li Z, Wang C, Zhou YJ, Xu H, Li S. Biochemical characterization of three new alpha-olefin-producing P450 fatty acid decarboxylases with a halophilic property. Biotechnol Biofuels, 2019, 12: 79.

[9]

Kang MK, Nielsen J. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J Ind Microbiol Biotechnol, 2017, 44(4–5): 613-622.

[10]

Klaus M, D'Souza AD, Nivina A, Khosla C, Grininger M. Engineering of chimeric polyketide synthases using SYNZIP docking domains. ACS Chem Biol, 2019, 14(3): 426-433.

[11]

Lee JW, Niraula NP, Trinh CT. Harnessing a P450 fatty acid decarboxylase from Macrococcus caseolyticus for microbial biosynthesis of odd chain terminal alkenes. Metab Eng Commun, 2018, 7.

[12]

Liu K, Li S. Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering. Curr Opin Biotechnol, 2020, 62: 7-14.

[13]

Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, Li S. Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase. Biotechnol Biofuels, 2014, 7: 28.

[14]

Liu WC, Baek J, Somorjai GA. The methanol economy: methane and carbon dioxide conversion. Top Catal, 2018, 61(7–8): 530-541.

[15]

Liu Y, Bai C, Xu Q, . Improved methanol-derived lovastatin production through enhancement of the biosynthetic pathway and intracellular lovastatin efflux in methylotrophic yeast. Bioresour Bioprocess, 2018, 5: 22.

[16]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408.

[17]

Matthews S, Belcher JD, Tee KL, Girvan HM, McLean KJ, Rigby SE, Levy CW, Leys D, Parker DA, Blankley RT, Munro AW. Catalytic determinants of alkene production by the cytochrome P450 peroxygenase OleTJE. J Biol Chem, 2017, 292(12): 5128-5143.

[18]

Miao L, Li Y, Zhu T. Metabolic engineering of methylotrophic Pichia pastoris for the production of β-alanine. Bioresour Bioprocess, 2021, 8: 89.

[19]

Reinke AW, Grant RA, Keating AE. A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering. J Am Chem Soc, 2010, 132: 6025-6031.

[20]

Rui Z, Li X, Zhu X, Liu J, Domigan B, Barr I, Cate JH, Zhang W. Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci USA, 2014, 111(51): 18237-18242.

[21]

Rui Z, Harris NC, Zhu X, Huang W, Zhang W. Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis. ACS Catal, 2015, 5(12): 7091-7094.

[22]

Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv, 2017, 35(6): 681-710.

[23]

Sheng J, Stevens J, Feng X. Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols. Sci Rep, 2016, 6: 26884.

[24]

Shi L, Wang J, Wang X, . Transcriptional regulatory networks of methanol-independent protein expression in Pichia pastoris under the AOX1 promoter with trans-acting elements engineering. Bioresour Bioprocess, 2020, 7: 18.

[25]

Sun J, Zhang L, Loh KC. Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes. Bioresour Bioprocess, 2021, 8: 68.

[26]

Thomik T, Wittig I, Choe JY, Boles E, Oreb M. An artificial transport metabolon facilitates improved substrate utilization in yeast. Nat Chem Biol, 2017, 13(11): 1158-1163.

[27]

Thompson KE, Bashor CJ, Lim WA, Keating AE. SYNZIP protein interaction toolbox: in vitro and in vivo specifications of heterospecific coiled-coil interaction domains. ACS Synth Biol, 2012, 1(4): 118-129.

[28]

Tian P, Wei Y, Ye M, Liu Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal, 2015, 5(3): 1922-1938.

[29]

Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A. A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synth Biol, 2016, 5(2): 172-186.

[30]

Wang S, Jiang S, Chen H, Bai WJ, Wang X. Directed evolution of a hydroxylase into a decarboxylase for synthesis of 1-alkenes from fatty acids. ACS Catal, 2020, 10(24): 14375-14379.

[31]

Wang Y, Fan L, Tuyishime P, Zheng P, Sun J. Synthetic methylotrophy: a practical solution for methanol-based biomanufacturing. Trends Biotechnol, 2020, 38(6): 650-666.

[32]

Weninger A, Hatzl AM, Schmid C, Vogl T, Glieder A. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J Biotechnol, 2016, 235: 139-149.

[33]

Yan C, Yu W, Zhai X, Yao L, Guo X, Gao J, Zhou YJ. Characterizing and engineering promoters for metabolic engineering of Ogataea polymorpha. Synth Syst Biotechnol, 2022, 7(1): 498-505.

[34]

Yang Z, Zhang Z. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review. Biotechnol Adv, 2018, 36(1): 182-195.

[35]

Yu W, Gao J, Zhai X, Zhou YJ. Screening neutral sites for metabolic engineering of methylotrophic yeast Ogataea polymorpha. Synth Syst Biotechnol, 2021, 6(2): 63-68.

[36]

Zhang W, Song M, Yang Q, Dai Z, Zhang S, Xin F, Dong W, Ma J, Jiang M. Current advance in bioconversion of methanol to chemicals. Biotechnol Biofuels, 2018, 11: 260.

[37]

Zhou YJ, Buijs NA, Zhu Z, Gomez DO, Boonsombuti A, Siewers V, Nielsen J. Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition. J Am Chem Soc, 2016, 138(47): 15368-15377.

[38]

Zhou YJ, Hu Y, Zhu Z, Siewers V, Nielsen J. Engineering 1-alkene biosynthesis and secretion by dynamic regulation in yeast. ACS Synth Biol, 2018, 7(2): 584-590.

[39]

Zhou YJ, Kerkhoven EJ, Nielsen J. Barriers and opportunities in bio-based production of hydrocarbons. Nat Energy, 2018, 3(11): 925-935.

Funding

National Natural Science Foundation of China(21922812)

National Key Research and Development Program of China(2021YFC2103500)

DICP innovation grant(DICP I201920)

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/