PDF
Abstract
There are many options for the utilization of biogas in different energy sectors (power, heat, mobility). The technical possibilities of using biogas are more diverse than the actual business models applied in the biogas industry. This paper shows the possible utilization pathways of biogas, divided into coupled power and heat generation, direct utilization and upgrading to a gas of a higher value. Subsequently, an overview of the business models discussed is given by a systematic literature review. The latter shows that the investigation of biogas business models is focused mainly on the last decade and has increased slightly over time. The regions of investigation can be found worldwide, with a clear focus on Europe. Direct use is studied mainly in the Asian and African regions. In the European context, a shift from investigating combined heat and power use to upgrading the biogas produced is evident.
Keywords
Biogas
/
Business models
/
Utilization pathways
/
CHP
/
Direct usage
/
Biogas upgrading
/
Hydrogen from biomass
Cite this article
Download citation ▾
Anica Mertins, Tim Wawer.
How to use biogas?: A systematic review of biogas utilization pathways and business models.
Bioresources and Bioprocessing, 2022, 9(1): 59 DOI:10.1186/s40643-022-00545-z
| [1] |
Adler P, Billig E, Brosowski A, Daniel-Gromke J, Falke I, Fischer E (eds) (2014) Leitfaden Biogasaufbereitung und -einspeisung, 5., vollständig überarbeitete Auflage. Fachagentur für Nachwachsende Rohstoffe e. V. (FNR), Gülzow-Prüzen.
|
| [2] |
Ahlström JM, Zetterholm J, Pettersson K, Harvey S, Wetterlund E. Economic potential for substitution of fossil fuels with liquefied biomethane in Swedish iron and steel industry—Synergy and competition with other sectors. Energy Convers Manage, 2020, 209.
|
| [3] |
Alves HJ, Bley Junior C, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araújo CH. Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrogen Energy, 2013, 38: 5215-5225.
|
| [4] |
Antonini C, Treyer K, Streb A, van der Spek M, Bauer C, Mazzotti M. Hydrogen production from natural gas and biomethane with carbon capture and storage—a techno-environmental analysis. Sust Energy Fuels, 2020, 4: 2967-2986.
|
| [5] |
Aryal N, Kvist T, Ammam F, Pant D, Ottosen LDM. An overview of microbial biogas enrichment. Bioresour Technol, 2018, 264: 359-369.
|
| [6] |
Backman M, Rogulska M. Biomethane use in Sweden. Arch Automot Eng, 2016, 71: 7-19.
|
| [7] |
Banja M, Jégard M, Motola V, Sikkema R. Support for biogas in the EU electricity sector—A comparative analysis. Biomass Bioenergy, 2019, 128: 105313.
|
| [8] |
Bär K, Wageneder S, Solka F, Saidi A, Zörner W. Flexibility potential of photovoltaic power plant and biogas plant hybrid systems in the distribution grid. Chem Eng Technology, 2020, 43: 1571-1577.
|
| [9] |
Bensah EC, Brew-Hammond A. Biogas technology dissemination in Ghana: history, current status, future prospects, and policy significance. Int J Energy, 2010, 1(2): 277-294.
|
| [10] |
Bensah EC, Mensah M, Antwi E. Status and prospects for household biogas plants in Ghana—lessons, barriers, potential, and way forward. Int J Energy Environ, 2011, 2(5): 887-898.
|
| [11] |
Bern G. Investing in energy: a primer on the economics of the energy industry Bloomberg financial series, 2012, Hoboken: Wiley
|
| [12] |
Bhatia RK, Ramadoss G, Jain AK, Dhiman RK, Bhatia SK, Bhatt AK. Conversion of waste biomass into gaseous fuel: present status and challenges in India. Bioenerg Res, 2020, 13: 1046-1068.
|
| [13] |
Billig E, Decker M, Benzinger W, Ketelsen F, Pfeifer P, Peters R, Stolten D, Thrän D. Non-fossil CO2 recycling—The technical potential for the present and future utilization for fuels in Germany. J CO2 Util, 2019, 30: 130-141.
|
| [14] |
Bisaglia C, Brambilla M, Cutini M, Fiorati S, Howell M. Methane/ gasoline bi-fuel engines as a power source for standard agriculture tractors: development and testing activities. Appl Eng Agric, 2018, 34: 365-375.
|
| [15] |
Bößner S, Devisscher T, Suljada T, Ismail CJ, Sari A, Mondamina NW. Barriers and opportunities to bioenergy transitions: an integrated, multi-level perspective analysis of biogas uptake in Bali. Biomass Bioenerg, 2019, 122: 457-465.
|
| [16] |
Braga LB, Silveira JL, Da Silva ME, Tuna CE, Machin EB, Pedroso DT. Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis. Renew Sustain Energy Rev, 2013, 28: 166-173.
|
| [17] |
Bragança I, Sánchez-Soberón F, Pantuzza GF, Alves A, Ratola N. Impurities in biogas: analytical strategies, occurrence, effects and removal technologies. Biomass Bioenerg, 2020, 143: 105878.
|
| [18] |
Browne J, Nizami A-S, Thamsiriroj T, Murphy JD. Assessing the cost of biofuel production with increasing penetration of the transport fuel market: a case study of gaseous biomethane in Ireland. Renew Sustain Energy Rev, 2011, 15: 4537-4547.
|
| [19] |
Budzianowski WM, Budzianowska DA. Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations. Energy, 2015, 88: 658-666.
|
| [20] |
Butemann H, Schimmelpfeng K. Long-term electricity production planning of a flexible biogas plant considering wear and tear. J Bus Econ, 2020, 90: 1289-1313.
|
| [21] |
Bystricky M, Knödlseder T, Weber-Blaschke G, Faulstich M. Comparing environmental impacts of electricity, heat and fuel from energy crops: evaluating biogas utilization pathways by the basket of benefit methodology. Eng Life Sci, 2010, 10: 570-576.
|
| [22] |
Calderón C, Avagianos I, Jossart J-M (2021) Bioenergy Europe Statistical Report-Biogas. Bioenergy Europe, Brussels, Belgium
|
| [23] |
Capodaglio AG, Callegari A, Lopez MV. European framework for the diffusion of biogas uses: emerging technologies, acceptance, incentive strategies, and institutional-regulatory support. Sustainability, 2016, 8: 298.
|
| [24] |
Carranza-Abaid A, Wanderley RR, Knuutila HK, Jakobsen JP. Analysis and selection of optimal solvent-based technologies for biogas upgrading. Fuel, 2021, 303.
|
| [25] |
Cavana M, Leone P. Biogas blending into the gas grid of a small municipality for the decarbonization of the heating sector. Biomass Bioenergy, 2019, 127: 105295.
|
| [26] |
Chen S, Chen B, Song D. Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization. Bioresour Technol, 2012, 114: 357-364.
|
| [27] |
Cucchiella F, D’Adamo I. Technical and economic analysis of biomethane: a focus on the role of subsidies. Energy Convers Manage, 2016, 119: 338-351.
|
| [28] |
Cucchiella F, D'Adamo I, Gastaldi M, Miliacca M. A profitability analysis of small-scale plants for biomethane injection into the gas grid. J Clean Prod, 2018, 184: 179-187.
|
| [29] |
Cvetković SM, Radoičić TK, Kijevčanin M, Novaković JG. Life cycle energy assessment of biohydrogen production via biogas steam reforming: case study of biogas plant on a farm in Serbia. Int J Hydrog Energy, 2021, 46: 14130-14137.
|
| [30] |
D'Adamo I, Falcone PM, Ferella F. A socio-economic analysis of biomethane in the transport sector: the case of Italy. Waste Manag, 2019, 95: 102-115.
|
| [31] |
Daniel-Gromke J, Rensberg N, Denysenko V, Trommler M, Reinholz T, Völler K, Beil M, Beyrich W (2017) Anlagenbestand Biogas und Biomethan–Biogaserzeugung und -nutzung in Deutschland, DBFZ Report Nr. 30. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig, Germany
|
| [32] |
Daniel-Gromke J, Kornatz P, Dotzauer M, Stur M, Denysenko V, Stelzer M, Hahn H, Krautkremer B, Bredow Hv, Antonow K (2019) Leitfaden Flexibilisierung der Strombereitstellung von Biogasanlagen (LF Flex)-Schlussbericht, Deutsches Biomasseforschungszentrum
|
| [33] |
Das CK, Ehsan MA, Kader MA, Alam MJ, Shafiullah GM. A practical biogas based energy neutral home system for rural communities of Bangladesh. J Renew Sustain Energy, 2016
|
| [34] |
Demuynck M, Nyns E-J. Biogas plants in Europe. Int J Solar Energy, 1984, 2: 477-485.
|
| [35] |
Edel M, Kühnel C (2019) biogaspartner – gemeinsam einspeisen. Biogaseinspeisung und -nutzung in Deutschland und Europa Markt, Technik und Akteure, Deutsche Energie-Agentur GmbH, Berlin
|
| [36] |
Edel M, Jegal J, Siegemund S, Schmidt P, Weindorf W (2019) dena-STUDIE: Bio-LNG–eine erneuerbare und emissionsarme Alternative im Straßengüter- und Schiffsverkehr: Potenziale, Wirtschaftlichkeit und Instrumente. Deutsche Energie-Agentur, Berlin
|
| [37] |
Dodds PE, Demoullin S. Conversion of the UK gas system to transport hydrogen. Int J Hydrog Energy, 2013, 38: 7189-7200.
|
| [38] |
Dotzauer M, Schering K, Barchmann T, Oehmichen K, Schmieder U, Steubing M, Wern B, Matschoss P, Pertagnol J, Eltrop L, Gouya S, Zielonka S, Böckmann A (2021) Bioenergie–Potentiale, Langfristperspektiven und Strategien für Anlagen zur Stromerzeugung nach 2020 (BE20plus)-Schlussbericht. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig, Germany
|
| [39] |
Dunkelberg E (ed) (2015) Biomethan im Energiesystem: Ökologische und ökonomische Bewertung von Aufbereitungsverfahren und Nutzungsoptionen ; gefördert durch das Bundesministerium für Wirtschaft und Energie im Rahmen des Projektes "Optimierung des innovativen Einsatzes eines Membranverfahrens zur Aufbereitung von Biogas zur Einspeisung ins öffentliche Erdgasnetz (MEGAS)". Schriftenreihe des IÖW, Bd. 207. Institut für ökologische Wirtschaftsforschung (IÖW), Berlin
|
| [40] |
Dzene I, Romagnoli F. Assessment of the potential for balancing wind power supply with biogas plants in Latvia. Energy Procedia, 2015, 72: 250-255.
|
| [41] |
Dzene I, Romagnoli F, Seile G, Blumberga D (2014) Comparison of different biogas use pathways for Latvia: biogas use in CHP vs. biogas upgrading. The 9th Conference Environmental Engineering 184. https://doi.org/10.3846/enviro.2014.017
|
| [42] |
Eggemann L, Escobar N, Peters R, Burauel P, Stolten D. Life cycle assessment of a small-scale methanol production system: a power-to-fuel strategy for biogas plants. J Clean Prod, 2020
|
| [43] |
Ertem FC, Acheampong M. Impacts of demand-driven energy production concept on the heat utilization efficiency at biogas plants: heat waste and flexible heat production. Process Integr Optim Sustain, 2018, 2: 1-16.
|
| [44] |
Esposito E, Dellamuzia L, Moretti U, Fuoco A, Giorno L, Jansen JC. Simultaneous production of biomethane and food grade CO 2 from biogas: an industrial case study. Energy Environ Sci, 2019, 12: 281-289.
|
| [45] |
European Alternative Fuels Observatory (2020) Countries overview of AF infrastructure. https://www.eafo.eu/countries/european-union-efta-turkey/23682/countries-compared. Accessed 17 Aug 2021
|
| [47] |
European Parliament and Council of the European Union (2018) Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast)
|
| [48] |
Fachagentur Nachwachsende Rohstoffe e. V. (2012) Biomethan
|
| [49] |
Fenton P, Kanda W. Barriers to the diffusion of renewable energy: studies of biogas for transport in two European cities. J Environ Plan Manag, 2017, 60: 725-742.
|
| [50] |
Fischer E, Postel J, Ehrendreich F, Nelles M (2016) Energetische Bewertung von landwirtschaftlichen Biogasanlagen mithilfe des mittleren Brennstoffausnutzungsgrades. 139–154 Seiten / LANDTECHNIK, Bd. 71 Nr. 4 (2016). https://doi.org/10.15150/LT.2016.3132
|
| [51] |
Fleischer B (2018) Systemeffekte von Bioenergie in der Elektrizitäts- und Fernwärmewirtschaft: Eine modellgestützte Analyse langfristiger Energiewendeszenarien in Deutschland. Dissertation, Universität Stuttgart
|
| [52] |
Gandiglio M, Drago D, Santarelli M. Techno-economic analysis of a solid oxide fuel cell installation in a biogas plant fed by agricultural residues and comparison with alternative biogas exploitation paths. Energy Procedia, 2016, 101: 1002-1009.
|
| [53] |
Goulding D, Power N. Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: biogas to CHP or biomethane as a transport fuel?. Renew Energy, 2013, 53: 121-131.
|
| [54] |
Grim J, Nilsson D, Hansson P-A, Nordberg Å. Demand-orientated power production from biogas: modeling and simulations under Swedish conditions. Energy Fuels, 2015, 29: 4066-4075.
|
| [55] |
Grösch N, Trox C, Saidi A, Zörner W, Grüner V, Baumkötter D, Brügging E, Wetter C, Glötzl M, Kilburg U, Gleich J, Wagner R, Vogt R (2020) Biogas nach dem EEG–(wie) kann´s weitergehen?: Handlungsmöglichkeiten für Anlagenbetreiber, Technische Hochschule Ingolstadt
|
| [56] |
Güsewell J, Bahret C, Eltrop L (2020) Auswirkungen von veränderten energie- und umweltrelevanten Rahmenbedingungen und Technologiefortschritt auf die Entwicklung sächsischer Biogasanlagen - AuRaSa
|
| [57] |
Güsewell J, Eltrop L, Hufendiek K. Seasonal flexibilisation: a solution for biogas plants to improve profitability. Adv Appl Energy, 2021, 2.
|
| [58] |
Hahn H, Krautkremer B, Hartmann K, Wachendorf M. Review of concepts for a demand-driven biogas supply for flexible power generation. Renew Sust Energ Rev, 2014, 29: 383-393.
|
| [59] |
Hahn H, Hartmann K, Bühle L, Wachendorf M. Comparative life cycle assessment of biogas plant configurations for a demand oriented biogas supply for flexible power generation. Bioresour Technol, 2015, 179: 348-358.
|
| [60] |
Hamid RG, Blanchard RE. An assessment of biogas as a domestic energy source in rural Kenya: developing a sustainable business model. Renew Energy, 2018, 121: 368-376.
|
| [61] |
Häring G, Sonnleitner M, Bär K, Brown N, Zörner W. Demonstration of Controllable Electricity Production via Biogas Plants. Chem Eng Technol, 2017, 40: 298-305.
|
| [62] |
Heffels T, McKenna R, Fichtner W. Direct marketing of electricity from biogas and biomethane: an economic analysis of several business models in Germany. J Manag Control, 2012, 23: 53-70.
|
| [63] |
Herbes C, Halbherr V, Braun L. Factors influencing prices for heat from biogas plants. Appl Energy, 2018, 221: 308-318.
|
| [64] |
Herbes C, Rilling B, Ringel M. Policy frameworks and voluntary markets for biomethane – How do different policies influence providers’ product strategies?. Energy Policy, 2021, 153.
|
| [65] |
Hijazi O, Tappen S, Effenberger M. Environmental impacts concerning flexible power generation in a biogas production. Carbon Resour Convers, 2019, 2: 117-125.
|
| [66] |
Hochloff P, Braun M. Optimizing biogas plants with excess power unit and storage capacity in electricity and control reserve markets. Biomass Bioenerg, 2014, 65: 125-135.
|
| [67] |
Hönig V, Prochazka P, Obergruber M, Smutka L, Kučerová V. Economic and Technological Analysis of Commercial LNG Production in the EU. Energies, 2019, 12: 1565.
|
| [68] |
Hornbachner D, Kryvoruchko V, Gikopoulos C, Dos Santos M, Targyik-Kumer L, Adler R, Klein E (2009) Wirtschaftliche Chancen der Biogas-Versorgung netzferner Gas-Tankstellen gegenüber konventioneller Erdgas-Versorgung: Bundesministerium für Verkehr, Innovation und Technologie
|
| [69] |
Horschig T, Adams PW, Röder M, Thornley P, Thrän D. Reasonable potential for GHG savings by anaerobic biomethane in Germany and UK derived from economic and ecological analyses. Appl Energy, 2016, 184: 840-852.
|
| [70] |
Horschig T, Welfle A, Billig E, Thrän D. From Paris agreement to business cases for upgraded biogas: analysis of potential market uptake for biomethane plants in Germany using biogenic carbon capture and utilization technologies. Biomass Bioenergy, 2019, 120: 313-323.
|
| [71] |
International Energy Agency (2020) Key World Energy Statistics 2020
|
| [72] |
Jaber N, Noguchi N, Wakabayashi S, Tsukamoto T (2009) The development of control algorithm for the dual-fuel engine of a biogas tractor - biogas flow optimization based on engine parameters. JSAM:4–74
|
| [73] |
Kalinichenko A, Havrysh V. Feasibility study of biogas project development: technology maturity, feedstock, and utilization pathway. Arch Environ Prot, 2019, 45: 68-83.
|
| [74] |
Karaeva JV. Hydrogen production at centralized utilization of agricultural waste. Int J Hydrog Energy, 2021, 46(69): 34089-96.
|
| [75] |
Karlsson NP. Business models and business cases for financial sustainability: Insights on corporate sustainability in the Swedish farm-based biogas industry. Sustain Prod Consum, 2019, 18: 115-129.
|
| [76] |
Kemausuor F, Adaramola MS, Morken J. A review of commercial biogas systems and lessons for Africa. Energies, 2018, 11: 2984.
|
| [77] |
Korberg AD, Skov IR, Mathiesen BV. The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark. Energy, 2020, 199.
|
| [78] |
Kruczyński SW, Pawlak G, Wojs MK, Wołoszyn R. Biogas as a perspective fuel for agriculture tractors. Zeszyty Naukowe Instytutu Pojazdów, 2013, 5(5): 151-156.
|
| [79] |
Lampinen A. Biogas farming: an energy self-sufficient farm in Finland. Refocus, 2004, 5: 30-32.
|
| [80] |
Lantz M. The economic performance of combined heat and power from biogas produced from manure in Sweden—a comparison of different CHP technologies. Appl Energy, 2012, 98: 502-511.
|
| [81] |
Lauven L-P, Geldermann J, Desideri U. Estimating the revenue potential of flexible biogas plants in the power sector. Energy Policy, 2019, 128: 402-410.
|
| [82] |
Lee D-H. Evaluation the financial feasibility of biogas upgrading to biomethane, heat, CHP and AwR. Int J Hydrogen Energy, 2017, 42: 27718-27731.
|
| [83] |
Li H, Tan Y, Ditaranto M, Yan J, Yu Z. Capturing CO2 from biogas plants. Energy Procedia, 2017, 114: 6030-6035.
|
| [84] |
Liebetrau J, Daniel-Gromke J, Jacobi F. Thrän D. Flexible power generation from biogas. Smart bioenergy, 2015, Cham: Springer International Publishing, 67-82.
|
| [85] |
Lisbona P, Pascual S, Pérez V. Evaluation of synergies of a biomass power plant and a biogas station with a carbon capture system. Energies, 2021, 14: 908.
|
| [86] |
Marcoberardino G, Vitali D, Spinelli F, Binotti M, Manzolini G. Green hydrogen production from raw biogas: a techno-economic investigation of conventional processes using pressure swing adsorption unit. Processes, 2018, 6: 19.
|
| [87] |
Matuszewska A, Owczuk M, Zamojska-Jaroszewicz A, Jakubiak-Lasocka J, Lasocki J, Orliński P. Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors. Energy Convers Manag, 2016, 125: 309-319.
|
| [88] |
Mihic S. Biogas for internal combustion engines. Ann Fac Eng Hunedoara, 2004, 2(3): 179-190.
|
| [89] |
Miltner M, Makaruk A, Harasek M. Review on available biogas upgrading technologies and innovations towards advanced solutions. J of Clean Prod, 2017, 161: 1329-1337.
|
| [90] |
Mohtar A, Ravi A, Ho WS, Choy CW, Hashim H, Muis Ab, Zarina Yunus NA, Hassim MH, Mah AXY. Mathematical optimisation of biogas production and utilisation. Chem Eng Trans, 2021, 83: 445-450.
|
| [91] |
Montenegro Camacho YS, Bensaid S, Piras G, Antonini M, Fino D. Techno-economic analysis of green hydrogen production from biogas autothermal reforming. Clean Techn Environ Policy, 2017, 19: 1437-1447.
|
| [92] |
Murano R, Maisano N, Selvaggi R, Pappalardo G, Pecorino B. Critical issues and opportunities for producing biomethane in Italy. Energies, 2021, 14: 2431.
|
| [93] |
Murray BC, Galik CS, Vegh T. Biogas in the United States: estimating future production and learning from international experiences. Mitig Adapt Strateg Glob Change, 2017, 22: 485-501.
|
| [94] |
Natural & Bio Gas Vehicle Association (2019) Vehicle Catalogue
|
| [95] |
New Holland Agriculture UK (2021) New Holland Agricultural Tractors T6 METHANE POWER Overview. https://agriculture.newholland.com/eu/en-uk/equipment/products/agricultural-tractors/t6-methane-power. Accessed 23 Aug 2021
|
| [96] |
Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renew Sust Energ Rev, 2017, 67: 597-611.
|
| [97] |
Noussan M, Raimondi PP, Scita R, Hafner M. The role of green and blue hydrogen in the energy transition—a technological and geopolitical perspective. Sustainability, 2021, 13: 298.
|
| [98] |
Owczuk M, Matuszewska A, Kruczyński S, Kamela W. Evaluation of using biogas to supply the dual fuel diesel engine of an agricultural tractor. Energies, 2019, 12: 1071.
|
| [99] |
Pasini G, Baccioli A, Ferrari L, Antonelli M, Frigo S, Desideri U. Biomethane grid injection or biomethane liquefaction: a technical-economic analysis. Biomass Bioenerg, 2019, 127: 105264.
|
| [100] |
Patrizio P, Chinese D. The impact of regional factors and new bio-methane incentive schemes on the structure, profitability and CO2 balance of biogas plants in Italy. Renew Energy, 2016, 99: 573-583.
|
| [101] |
Patrizio P, Leduc S, Chinese D, Dotzauer E, Kraxner F. Biomethane as transport fuel—a comparison with other biogas utilization pathways in northern Italy. Appl Energy, 2015, 157: 25-34.
|
| [102] |
Patrizio P, Leduc S, Chinese D, Kraxner F. Internalizing the external costs of biogas supply chains in the Italian energy sector. Energy, 2017, 125: 85-96.
|
| [103] |
Paturska A, Repele M, Bazbauers G. Economic assessment of biomethane supply system based on natural gas infrastructure. Energy Procedia, 2015, 72: 71-78.
|
| [104] |
Redwanz M, Walter H. Biogas und Äthanol als alternative Kraftstoffe für landwirtschaftliche Motoren. Tropenlandwirt, 1984, 85: 15-27.
|
| [105] |
Roose A, Reinsoo K, Oja A, Varžinskas V. Underdog or bulldog: introducing biogas technologies in Estonia. Clean Techn Environ Policy, 2012, 14: 1085-1093.
|
| [106] |
Rosa L, Sanchez DL, Mazzotti M. Assessment of carbon dioxide removal potential via BECCS in a carbon-neutral Europe. Energy Environ Sci, 2021, 14: 3086-3097.
|
| [107] |
Saracevic E, Woess D, Theuretzbacher F, Friedl A, Miltner A. Techno-economic assessment of providing control energy reserves with a biogas plant. Front Chem Sci Eng, 2018, 12: 763-771.
|
| [108] |
Sarker S, Lamb JJ, Hjelme DR, Lien KM. Overview of recent progress towards in-situ biogas upgradation techniques. Fuel, 2018, 226: 686-697.
|
| [109] |
Schmid C, Horschig T, Pfeiffer A, Szarka N, Thrän D. Biogas upgrading: a review of national biomethane strategies and support policies in selected countries. Energies, 2019, 12: 3803.
|
| [110] |
Silaen M, Taylor R, Bößner S, Anger-Kraavi A, Chewpreecha U, Badinotti A, Takama T. Lessons from Bali for small-scale biogas development in Indonesia. Environ Innov Soc Transit, 2020, 35: 445-459.
|
| [111] |
Stürmer B, Leiers D, Anspach V, Brügging E, Scharfy D, Wissel T. Agricultural biogas production: a regional comparison of technical parameters. Renew Energy, 2021, 164: 171-182.
|
| [112] |
Stürmer B, Theuretzbacher F, Saracevic E. Opportunities for the integration of existing biogas plants into the Austrian electricity market. Renew Sust Energ Rev, 2021, 138.
|
| [113] |
Szarka N, Scholwin F, Trommler M, Fabian Jacobi H, Eichhorn M, Ortwein A, Thrän D. A novel role for bioenergy: a flexible, demand-oriented power supply. Energy, 2013, 61: 18-26.
|
| [114] |
Technische Hochschule Ingolstadt (2020) Repoweringmaßnahmen hinsichtlich zukünftiger Aufgaben von Biogasanlagen: Schlussbericht
|
| [115] |
Theuerl S, Herrmann C, Heiermann M, Grundmann P, Landwehr N, Kreidenweis U, Prochnow A. The future agricultural biogas plant in Germany: a vision. Energies, 2019, 12: 396.
|
| [116] |
van Basshuysen R. Natural gas and renewable methane for powertrains, 2016, Cham: Springer International Publishing
|
| [117] |
Verotti M, Servadio P, Bergonzoli S. Biogas upgrading and utilization from ICEs towards stationary molten carbonate fuel cell systems. Int J Green Energy, 2016, 13: 655-664.
|
| [118] |
Wattanasilp C, Songprakorp R, Nopharatana A, Khompatraporn C. Techno-cost-benefit analysis of biogas production from industrial cassava starch wastewater in Thailand for optimal utilization with energy storage. Energies, 2021, 14: 416.
|
| [119] |
Watter H. Regenerative energiesysteme, 2019, Wiesbaden: Springer Fachmedien
|
| [120] |
Wille-Haussmann B, Erge T, Wittwer C. Decentralised optimisation of cogeneration in virtual power plants. Sol Energy, 2010, 84: 604-611.
|
| [121] |
Wu B, Zhang X, Shang D, Bao Di, Zhang S, Zheng T. Energetic-environmental-economic assessment of the biogas system with three utilization pathways: combined heat and power, biomethane and fuel cell. Bioresour Technol, 2016, 214: 722-728.
|
| [122] |
Wulf C, Kaltschmitt M. Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresour Technol, 2013, 150: 466-475.
|
| [123] |
Wünning JG (2021) Grüner Wasserstoff aus biogas. gwf Gas+Energie 4:37–40
|
| [124] |
Yao J, Kraussler M, Benedikt F, Hofbauer H. Techno-economic assessment of hydrogen production based on dual fluidized bed biomass steam gasification, biogas steam reforming, and alkaline water electrolysis processes. Energy Convers Manage, 2017, 145: 278-292.
|
| [125] |
Yasmin N, Grundmann P. Pre- and post-adoption beliefs about the diffusion and continuation of biogas-based cooking fuel technology in Pakistan. Energies, 2019, 12: 3184.
|
| [126] |
Yuan D, Wang J, Huang X, Mao X-F, Hong Z, Cao Y, Li J. Emission reduction effects of biogas micro-digesters: a case study of rural households in Kaixian China. Fresenius Environ Bull, 2015, 24(4b): 1530-1536.
|
Funding
Deutsche Bundesstiftung Umwelt(AZ 34663)
Hochschule Osnabrück (3338)