A novel thermophilic chitinase directly mined from the marine metagenome using the deep learning tool Preoptem

Yan Zhang , Feifei Guan , Guoshun Xu , Xiaoqing Liu , Yuhong Zhang , Jilu Sun , Bin Yao , Huoqing Huang , Ningfeng Wu , Jian Tian

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 54

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 54 DOI: 10.1186/s40643-022-00543-1
Research

A novel thermophilic chitinase directly mined from the marine metagenome using the deep learning tool Preoptem

Author information +
History +
PDF

Abstract

Chitin is abundant in nature and its degradation products are highly valuable for numerous applications. Thermophilic chitinases are increasingly appreciated for their capacity to biodegrade chitin at high temperatures and prolonged enzyme stability. Here, using deep learning approaches, we developed a prediction tool, Preoptem, to screen thermophilic proteins. A novel thermophilic chitinase, Chi304, was mined directly from the marine metagenome. Chi304 showed maximum activity at 85 ℃, its Tm reached 89.65 ± 0.22℃, and exhibited excellent thermal stability at 80 and 90 °C. Chi304 had both endo- and exo-chitinase activities, and the (GlcNAc)2 was the main hydrolysis product of chitin-related substrates. The product yields of colloidal chitin degradation reached 97% within 80 min, and 20% over 4 days of reaction with crude chitin powder. This study thus provides a method to mine the novel thermophilic chitinase for efficient chitin biodegradation.

Keywords

Deep learning / Chitinase / Thermal stability / Chitooligosaccharides

Cite this article

Download citation ▾
Yan Zhang, Feifei Guan, Guoshun Xu, Xiaoqing Liu, Yuhong Zhang, Jilu Sun, Bin Yao, Huoqing Huang, Ningfeng Wu, Jian Tian. A novel thermophilic chitinase directly mined from the marine metagenome using the deep learning tool Preoptem. Bioresources and Bioprocessing, 2022, 9(1): 54 DOI:10.1186/s40643-022-00543-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adam N, Perner M. Novel hydrogenases from deep-sea hydrothermal vent metagenomes identified by a recently developed activity-based screen. ISME J, 2018, 12(5): 1225-1236.

[2]

Ajavakom A, Supsvetson S, Somboot A, Sukwattanasinitt M. Products from microwave and ultrasonic wave assisted acid hydrolysis of chitin. Carbohydr Polym, 2012, 90(1): 73-77.

[3]

Alma'abadi AD, Gojobori T, Mineta K. Marine metagenome as a resource for novel enzymes. Genomics Proteomics Bioinformatics, 2015, 13(5): 290-295.

[4]

Barad BA, Liu L, Diaz RE, Basilio R, Van Dyken SJ, Locksley RM, Fraser JS. Differences in the chitinolytic activity of mammalian chitinases on soluble and insoluble substrates. Protein Sci, 2020, 29(4): 966-977.

[5]

Berezovsky IN, Shakhnovich EI. Physics and evolution of thermophilic adaptation. Proc Natl Acad Sci USA, 2005, 102: 12742-12747.

[6]

Bouacem K, Laribi-Habchi H, Mechri S, Hacene H, Jaouadi B, Bouanane-Darenfed A. Biochemical characterization of a novel thermostable chitinase from Hydrogenophilus hirschii strain KB-DZ44. Int J Biol Macromol, 2018, 106: 338-350.

[7]

Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci, 2011, 36(8): 981-1014.

[8]

Desaki Y, Miyata K, Suzuki M, Shibuya N, Kaku H. Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immun, 2018, 24(2): 92-100.

[9]

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD. The Pfam protein families database in 2019. Nucleic Acids Res, 2019, 47(D1): D427-d432.

[10]

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol, 2019, 20(1): 238.

[11]

Gado JE, Beckham GT, Payne CM. Improving enzyme optimum temperature prediction with resampling strategies and ensemble learning. J Chem Inf Model, 2020, 60(8): 4098-4107.

[12]

Garcia-Fraga B, da Silva AF, Lopez-Seijas J, Sieiro C. A novel family 19 chitinase from the marine-derived Pseudoalteromonas tunicata CCUG 44952T: heterologous expression, characterization and antifungal activity. Biochem Eng J, 2015, 93: 84-93.

[13]

Guan F, Han Y, Yan K, Zhang Y, Zhang Z, Wu N, Tian J. Highly efficient production of chitooligosaccharides by enzymes mined directly from the marine metagenome. Carbohydr Polym, 2020, 234: 115909-115909.

[14]

Hong J, Ye X, Wang Y, Zhang YH. Bioseparation of recombinant cellulose-binding module-proteins by affinity adsorption on an ultra-high-capacity cellulosic adsorbent. Anal Chim Acta, 2008, 621(2): 193-199.

[15]

Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol, 2017, 34(8): 2115-2122.

[16]

Jia X, Rajib MR, Yin H. Recognition pattern, functional mechanism and application of chitin and chitosan oligosaccharides in sustainable agriculture. Curr Pharm Des, 2020, 26(29): 3508-3521.

[17]

Kidibule PE, Santos-Moriano P, Plou FJ, Fernández-Lobato M. Endo-chitinase Chit33 specificity on different chitinolytic materials allows the production of unexplored chitooligosaccharides with antioxidant activity. Biotechnol Rep (amst), 2020, 27.

[18]

Kuzu SB, Güvenmez HK, Denizci AA. Production of a thermostable and alkaline chitinase by Bacillusthuringiensis subsp. kurstaki strain HBK-51. Biotechnol Res Int, 2012, 2012.

[19]

Li G, Rabe KS, Nielsen J, Engqvist MKM. Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima. ACS Synth Biol, 2019, 8(6): 1411-1420.

[20]

Loni PP, Patil JU, Phugare SS, Bajekal SS. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis NCIM 5434. J Basic Microbiol, 2014, 54(10): 1080-1089.

[21]

Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31(3): 426-428.

[22]

Mirete S, Morgante V, González-Pastor JE. Functional metagenomics of extreme environments. Curr Opin Biotechnol, 2016, 38: 143-149.

[23]

Mohamed S, Bouacem K, Mechri S, Addou NA, Laribi-Habchi H, Fardeau ML, Jaouadi B, Bouanane-Darenfed A, Hacène H. Purification and biochemical characterization of a novel acido-halotolerant and thermostable endochitinase from Melghiribacillus thermohalophilus strain Nari2A(T). Carbohydr Res, 2019, 473: 46-56.

[24]

Nasseri SA, Betschart L, Opaleva D, Rahfeld P, Withers SG. A mechanism-based approach to screening metagenomic libraries for discovery of unconventional glycosidases. Angew Chem Int Ed Engl, 2018, 57(35): 11359-11364.

[25]

Palcic MM. Glycosyltransferases as biocatalysts. Curr Opin Chem Biol, 2011, 15(2): 226-233.

[26]

Pusztahelyi T. Chitin and chitin-related compounds in plant-fungal interactions. Mycology, 2018, 9(3): 189-201.

[27]

Siedhoff NE, Schwaneberg U, Davari MD. Machine learning-assisted enzyme engineering. Methods Enzymol, 2020, 643: 281-315.

[28]

Singh N, Malik S, Gupta A, Srivastava KR. Revolutionizing enzyme engineering through artificial intelligence and machine learning. Emerg Top Life Sci, 2021, 5(1): 113-125.

[29]

Söhngen C, Bunk B, Podstawka A, Gleim D, Overmann J. BacDive–the bacterial diversity metadatabase. Nucleic Acids Res, 2014, 42(Database issue): D592-D599.

[30]

Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, Cruaud C, Dovidio F, Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain J, Poulos BT, Royo-Llonc M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Bowler C, de Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan MB, Weissenbach J, Wincker P, Karsenti E, Raes J, Acinas SG, Bork P. Ocean plankton. Structure and function of the global ocean microbiome. Science, 2015, 348(6237): 1261359.

[31]

Suzuki K, Sugawara N, Suzuki M, Uchiyama T, Katouno F, Nikaidou N, Watanabe T. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem, 2002, 66(5): 1075-1083.

[32]

Tanaka T, Fujiwara S, Nishikori S, Fukui T, Takagi M, Imanaka T. A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl Environ Microbiol, 1999, 65(12): 5338-5344.

[33]

Tanaka T, Fukui T, Atomi H, Imanaka T. Characterization of an exo-beta-D-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol, 2003, 185(17): 5175-5181.

[34]

Wang X, Chi N, Bai F, Du Y, Zhao Y, Yin H. Characterization of a cold-adapted and salt-tolerant exo-chitinase (ChiC) from Pseudoalteromonas sp. DL-6. Extremophiles, 2016, 20(2): 167-176.

[35]

Yabushita M, Kobayashi H, Kuroki K, Ito S, Fukuoka A. Catalytic depolymerization of chitin with retention of N-acetyl group. Chemsuschem, 2015, 8(22): 3760-3763.

[36]

Yahiaoui M, Laribi-Habchi H, Bouacem K, Asmani KL, Mechri S, Harir M, Bendif H, Aïssani-El Fertas R, Jaouadi B. Purification and biochemical characterization of a new organic solvent-tolerant chitinase from Paenibacillus timonensis strain LK-DZ15 isolated from the Djurdjura mountains in Kabylia. Algeria Carbohydr Res, 2019, 483.

[37]

Yang S, Fu X, Yan Q, Guo Y, Liu Z, Jiang Z. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii. Food Chem, 2016, 192: 1041-1048.

[38]

Zhang A, Gao C, Wang J, Chen K, Ouyang P. An efficient enzymatic production of N-acetyl-D-glucosamine from crude chitin powders. Green Chem, 2015

[39]

Zhang A, Wei G, Mo X, Zhou N, Chen K, Ouyang P. Enzymatic hydrolysis of chitin pretreated by bacterial fermentation to obtain pure N-acetyl-d-glucosamine. Green Chem, 2018, 20(10): 2320-2327.

Funding

the National Key R&D Program of China(2021YFC2100300)

the Central Public-interest Scientific Institution Basal Research Fund(Y2019XK19)

the Agricultural Science and Technology Innovation Program (ASTIP)

the Key Research and Development Plan Project of Hebei Province(19273201D)

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/