Catalytic properties and biological function of a PIWI-RE nuclease from Pseudomonas stutzeri

Fei Huang , Xiaoyi Xu , Huarong Dong , Nuolan Li , Bozitao Zhong , Hui Lu , Qian Liu , Yan Feng

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 57

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 57 DOI: 10.1186/s40643-022-00539-x
Research

Catalytic properties and biological function of a PIWI-RE nuclease from Pseudomonas stutzeri

Author information +
History +
PDF

Abstract

Background

Prokaryotic Argonaute (pAgo) proteins are well-known oligonucleotide-directed endonucleases, which contain a conserved PIWI domain required for endonuclease activity. Distantly related to pAgos, PIWI-RE family, which is defined as PIWI with conserved R and E residues, has been suggested to exhibit divergent activities. The distinctive biochemical properties and physiological functions of PIWI-RE family members need to be elucidated to explore their applications in gene editing.

Results

Here, we describe the catalytic performance and cellular functions of a PIWI-RE family protein from Pseudomonas stutzeri (PsPIWI-RE). Structural modelling suggests that the protein possesses a PIWI structure similar to that of pAgo, but with different PAZ-like and N-terminal domains. Unlike previously reported pAgos, recombinant PsPIWI-RE acts as an RNA-guided DNA nuclease, as well as a DNA-guided RNA nuclease. It cleaves single-stranded DNA at temperatures ranging from 20 to 65 °C, with an optimum temperature of 45 °C. Mutation at D525 or D610 significantly reduced its endonuclease activity, confirming that both residues are key for catalysis. Comparing with wild-type, mutant with PIWI-RE knockout is more sensitive to ciprofloxacin as DNA replication inhibitor, suggesting PIWI-RE may potentially be involved in DNA replication.

Conclusion

Our study provides the first insights into the programmable nuclease activity and biological function of the unknown PIWI-RE family of proteins, emphasizing their important role in vivo and potential application in genomic DNA modification.

Keywords

PIWI-RE / Endonuclease / Pseudomonas stutzeri / Catalysis / DNA replication

Cite this article

Download citation ▾
Fei Huang, Xiaoyi Xu, Huarong Dong, Nuolan Li, Bozitao Zhong, Hui Lu, Qian Liu, Yan Feng. Catalytic properties and biological function of a PIWI-RE nuclease from Pseudomonas stutzeri. Bioresources and Bioprocessing, 2022, 9(1): 57 DOI:10.1186/s40643-022-00539-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burroughs AM, Iyer LM, Aravind L. Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Biol Direct, 2013, 8(1): 13.

[2]

Enghiad B, Zhao H. Programmable DNA-guided artificial restriction enzymes. ACS Synth Biol, 2017, 6(5): 752-757.

[3]

Fu L, Xie C, Jin Z, Tu Z, Han L, Jin M, Xiang Y, Zhang A. The prokaryotic Argonaute proteins enhance homology sequence-directed recombination in bacteria. Nucleic Acids Res, 2019, 47(7): 3568-3579.

[4]

González JF, Alberts H, Lee J, Doolittle L, Gunn JS. Biofilm formation protects salmonella from the antibiotic ciprofloxacin in vitro and in vivo in the mouse model of chronic carriage. Sci Rep, 2018, 8(1): 222.

[5]

Hegge JW, Swarts DC, Chandradoss SD, Cui TJ, Kneppers J, Jinek M, Joo C, van der Oost J. DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute. Nucleic Acids Res, 2019, 47(11): 5809-5821.

[6]

Hegge JW, Swarts DC, van der Oost J (2017) Prokaryotic Argonaute proteins: novel genome-editing tools? Nat Rev Microbiol.

[7]

Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol, 2008, 9(1): 22-32.

[8]

Jolly SM, Gainetdinov I, Jouravleva K, Zhang H, Strittmatter L, Bailey SM, Hendricks GM, Dhabaria A, Ueberheide B, Zamore PD. Thermus thermophilus argonaute functions in the completion of DNA replication. Cell, 2020, 182(6): 1545-1559.e1518.

[9]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873): 583-589.

[10]

Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA. A bacterial Argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci USA, 2016, 113(15): 4057-4062.

[11]

Kuzmenko A, Yudin D, Ryazansky S, Kulbachinskiy A, Aravin AA. Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea. Nucleic Acids Res, 2019, 47(11): 5822-5836.

[12]

Kuzmenko A, Oguienko A, Esyunina D, Yudin D, Petrova M, Kudinova A, Maslova O, Ninova M, Ryazansky S, Leach D, Aravin AA, Kulbachinskiy A. DNA targeting and interference by a bacterial Argonaute nuclease. Nature, 2020, 587(7835): 632-637.

[13]

Lee KZ, Mechikoff MA, Kikla A, Liu A, Pandolfi P, Fitzgerald K, Gimble FS, Solomon KV. NgAgo possesses guided DNA nicking activity. Nucleic Acids Res, 2021, 49(17): 9926-9937.

[14]

Lewin CS, Howard BM, Smith JT. Protein- and RNA-synthesis independent bactericidal activity of ciprofloxacin that involves the A subunit of DNA gyrase. J Med Microbiol, 1991, 34(1): 19-22.

[15]

Liu Y, Tao W, Wen S, Li Z, Yang A, Deng Z, Sun Y. In vitro CRISPR/Cas9 system for efficient targeted DNA editing. Mbio, 2015, 6(6): e01714-01715.

[16]

Liu Q, Guo X, Xun G, Li Z, Chong Y, Yang L, Wang H, Zhang F, Luo S, Cui L, Zhao P, Ye X, Xu H, Lu H, Li X, Deng Z, Li K, Feng Y. Argonaute integrated single-tube PCR system enables supersensitive detection of rare mutations. Nucleic Acids Res, 2021, 49(13): e75-e75.

[17]

Miyoshi T, Ito K, Murakami R, Uchiumi T. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Nat Commun, 2016, 7: 11846.

[18]

Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell, 2013, 51(5): 594-605.

[19]

Pan XS, Ambler J, Mehtar S, Fisher LM. Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae. Antimicrob Agents Chemother, 1996, 40(10): 2321-2326.

[20]

Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci USA, 2014, 111(2): 652-657.

[21]

Song JJ, Joshua-Tor L. Argonaute and RNA-getting into the groove. Curr Opin Struct Biol, 2006, 16(1): 5-11.

[22]

Song JJ, Smith SK, Hannon GJ, Joshua-Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 2004, 305(5689): 1434-1437.

[23]

Song J, Hegge JW, Mauk MG, Chen J, Till JE, Bhagwat N, Azink LT, Peng J, Sen M, Mays J, Carpenter EL, van der Oost J, Bau HH. Highly specific enrichment of rare nucleic acid fractions using Thermus thermophilus argonaute with applications in cancer diagnostics. Nucleic Acids Res, 2019, 48(4): e19-e19.

[24]

Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJ, van der Oost J. DNA-guided DNA interference by a prokaryotic Argonaute. Nature, 2014, 507(7491): 258-261.

[25]

Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol, 2014, 21(9): 743-753.

[26]

Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res, 2015, 43(10): 5120-5129.

[27]

Swarts DC, Szczepaniak M, Sheng G, Chandradoss SD, Zhu Y, Timmers EM, Zhang Y, Zhao H, Lou J, Wang Y, Joo C, van der Oost J. Autonomous generation and loading of DNA guides by bacterial Argonaute. Mol Cell, 2017, 65(6): 985-998e986.

[28]

Voloshin ON, Camerini-Otero RD. The DinG protein from Escherichia coli is a structure-specific helicase. J Biol Chem, 2007, 282(25): 18437-18447.

[29]

Voloshin ON, Vanevski F, Khil PP, Camerini-Otero RD. Characterization of the DNA damage-inducible helicase DinG from Escherichia coli. J Biol Chem, 2003, 278(30): 28284-28293.

[30]

Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature, 2008, 456(7224): 921-926.

[31]

Willkomm S, Oellig CA, Zander A, Restle T, Keegan R, Grohmann D, Schneider S. Structural and mechanistic insights into an archaeal DNA-guided Argonaute protein. Nat Microbiol, 2017, 2: 17035.

[32]

Xiao Y, Ke A. PIWI takes a giant step. Cell, 2016, 167(2): 310-312.

[33]

Xun G, Liu Q, Chong Y, Guo X, Li Z, Li Y, Fei H, Li K, Feng Y. Argonaute with stepwise endonuclease activity promotes specific and multiplex nucleic acid detection. Bioresour Bioprocess, 2021, 8(1): 46.

Funding

National Natural Science Foundation of China(32170035)

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/