Salt-tolerant and thermostable mechanisms of an endoglucanase from marine Aspergillus niger

Li-Nian Cai , Sheng-Nan Xu , Tao Lu , Dong-Qiang Lin , Shan-Jing Yao

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 44

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 44 DOI: 10.1186/s40643-022-00533-3
Research

Salt-tolerant and thermostable mechanisms of an endoglucanase from marine Aspergillus niger

Author information +
History +
PDF

Abstract

The cellulase cocktail of marine Aspergillus niger exhibited salt-tolerant and thermostable properties, which is of great potential in industrial application. In order to excavate the single tolerant cellulase components from complex cellulase cocktail, constitutive homologous expression was employed for direct obtainment of the endoglucanase (AnEGL). Enzymatic property study revealed that AnEGL exhibited a property of salt tolerance and a strong thermostability in high salinity environment. Significantly, its activity increased to 129% and the half-life at 65 °C increased to 27.7-fold with the presence of 4.5 M NaCl. Molecular dynamics simulation revealed that Na+ and Cl could form salt bridges with charged residues, and then influenced the activity of loops and the stability of substrate binding pocket, which accounted for the salt tolerance and thermostability. Further, site-specific mutagenesis study proved that the residues Asp95 and Asp99 in the pocket were of great concern for the tolerant properties. The salt-tolerant and thermostable AnEGL was of great value in lignocellulosic utilization and the conjectural mechanisms were of referential significance for other tolerant enzymes.

Keywords

Constitutive homologous expression / Endoglucanase / Marine Aspergillus niger / Salt tolerance / Thermostability / Salt bridge

Cite this article

Download citation ▾
Li-Nian Cai, Sheng-Nan Xu, Tao Lu, Dong-Qiang Lin, Shan-Jing Yao. Salt-tolerant and thermostable mechanisms of an endoglucanase from marine Aspergillus niger. Bioresources and Bioprocessing, 2022, 9(1): 44 DOI:10.1186/s40643-022-00533-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An T, Dong Z, Lv J, Liu Y, Wang M, Wei S, Song Y, Zhang Y, Deng S. Purification and characterization of a salt-tolerant cellulase from the mangrove oyster, CrassostreaRivularis. Acta Bioch Bioph Sin, 2015, 47(4): 299-305.

[2]

Barbara K. Mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions effects on the activity of jack bean urease. Probing the modes of metal binding to the enzyme. J Enzyme Inhib Med Ch, 2008, 23(4): 535-542.

[3]

Ben Hmad I, Boudabbous M, Belghith H, Gargouri A. A novel ionic liquid-stable halophilic endoglucanase from Stachybotrys microspora. Process Biochem, 2017, 54: 59-66.

[4]

Cai L, Xu S, Lu T, Lin D, Yao S. Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger. J Biotechnol, 2019, 292: 12-22.

[5]

Chylenski P, Bissaro B, Sørlie M, Røhr ÅK, Várnai A, Horn SJ, Eijsink VGH. Lytic polysaccharide monooxygenases in enzymatic processing of lignocellulosic biomass. ACS Catal, 2019, 9(6): 4970-4991.

[6]

Dassarma S, Dassarma P. Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol, 2015, 25: 120-126.

[7]

Deep K, Poddar A, Das SK. Cloning, overexpression, and characterization of halostable, solvent-tolerant novel β-endoglucanase from a marine bacterium Photobacterium panuliri LBS5T (DSM 27646T). Appl Biochem Biotech, 2016, 178(4): 695-709.

[8]

Elcock AH, Mccammon JA. Electrostatic contributions to the stability of halophilic proteins. J Mol Biol, 1998, 280(4): 731-748.

[9]

Fabian H, Schultz C, Naumann D, Landt O, Hahn U, Saenger W. Secondary structure and semperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution: a fourier transform infrared spectroscopic study. J Mol Biol, 1993, 232(3): 967-981.

[10]

Gao Z, Ruan L, Chen X, Zhang Y, Xu X. A novel salt-tolerant endo-β-14-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Appl Microbiol Biotechnol, 2010, 87(4): 1373-1382.

[11]

Han H, Ling Z, Khan A, Virk AK, Kulshrestha S, Li X. Improvements of thermophilic enzymes: from genetic modifications to applications. Bioresource Technol, 2019, 279: 350-361.

[12]

Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol, 2009, 100(1): 10-18.

[13]

Hua M, Zhao S, Zhang L, Liu D, Xia H, Li F, Chen S. Direct detection, cloning and characterization of a glucoside hydrolase from forest soil. Biotechnol Lett, 2015, 37(6): 1227-1232.

[14]

Huang X, Shao Z, Hong Y, Lin L, Li C, Huang F, Wang H, Liu Z. Cel8H, a novel endoglucanase from the halophilic bacterium Halomonas sp. S66–4: molecular cloning, heterogonous expression, and biochemical characterization. J Microbiol, 2010, 48(3): 318-324.

[15]

Kadowaki M, Higasi P, de Godoy MO, Prade RA, Polikarpov I. Biochemical and structural insights into a thermostable cellobiohydrolase from Myceliophthora thermophila. FEBS J, 2018, 285(3): 559-579.

[16]

Kern M, Mcgeehan JE, Streeter SD, Martin RNA, Besser K, Elias L, Eborall W, Malyon GP, Payne CM, Himmel ME, Schnorr K, Beckham GT, Cragg SM, Bruce NC, Mcqueen-Mason SJ. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc Natl Acad Sci USA, 2013, 110(25): 10189-10194.

[17]

Khademi S, Zhang D, Swanson SM, Wartenberg A, Witte K, Meyer EF. Determination of the structure of an endoglucanase from Aspergillus niger and its mode of inhibition by palladium chloride. Acta Crystallogr D, 2002, 58(4): 660-667.

[18]

Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res, 2009, 48(8): 3713-3729.

[19]

Lee JP, Seo G, An S, Kim H. A cold-active acidophilic endoglucanase of Paenibacillus sp. Y2 isolated from soil in an alpine region. J Appl Biol Chem, 2017, 60(3): 257-263.

[20]

Li X, Yu H. Characterization of a halostable endoglucanase with organic solvent-tolerant property from Haloarcula sp. G10. Int J Biol Macromol, 2013, 62: 101-106.

[21]

Li Z, Pei X, Zhang Z, Wei Y, Song Y, Chen L, Liu S, Zhang S. The unique GH5 cellulase member in the extreme halotolerant fungus Aspergillus glaucus CCHA is an endoglucanase with multiple tolerance to salt alkali and heat: prospects for straw degradation applications. Extremophiles, 2018, 22(4): 675-685.

[22]

Liang C, Xue Y, Fioroni M, Rodríguez-Ropero F, Zhou C, Schwaneberg U, Ma Y. Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol, 2011, 89(2): 315-326.

[23]

Madern D, Ebel C, Zaccai G. Halophilic adaptation of enzymes. Extremophiles, 2000, 4(2): 91-98.

[24]

Mai Z, Yang J, Tian X, Li J, Zhang S. Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced β-glucosidase from a marine Streptomycete. Appl Biochem Biotech, 2013, 169(5): 1512-1522.

[25]

Mai Z, Su H, Yang J, Huang S, Zhang S. Cloning and characterization of a novel GH44 family endoglucanase from mangrove soil metagenomic library. Biotechnol Lett, 2014, 36(8): 1701-1709.

[26]

Mesbah NM, Wiegel J. A halophilic alkalithermostable ionic liquid-tolerant cellulase and its application in in situ saccharification of rice straw. Bioenerg Res, 2017, 10(2): 583-591.

[27]

Michielse CB, Hooykaas PJJ, van den Hondel CAMJ, Ram AFJ. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet, 2005, 48(1): 1-17.

[28]

Patel AK, Singhania RR, Sim SJ, Pandey A. Thermostable cellulases: current status and perspectives. Bioresource Technol, 2019, 279: 385-392.

[29]

Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal cellulases. Chem Rev, 2015, 115(3): 1308-1448.

[30]

Perez-Iratxeta C, Andrade-Navarro MA. K2D2: Estimation of protein secondary structure from circular dichroism spectra. BMC Struct Biol, 2008, 8(1): 25.

[31]

Shuddhodana Gupta MN, Bisaria VS. Stable cellulolytic enzymes and their application in hydrolysis of lignocellulosic biomass. Biotechnol J, 2018, 13(6): 1700633.

[32]

Soni SK, Sharma A, Soni R. Lübeck M. Cellulases: role in lignocellulosic biomass utilization. Cellulases, 2018, Totowa: Humana Press.

[33]

Unsworth LD, van der Oost J, Koutsopoulos S. Hyperthermophilic enzymes—stability activity and implementation strategies for high temperature applications. FEBS J, 2007, 274(16): 4044-4056.

[34]

Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources uses and molecular mechanisms for thermostability. Microbiol Mol Biol R, 2001, 65(1): 1-43.

[35]

Wahlström RM, Suurnäkki A. Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chem, 2015, 17(2): 694-714.

[36]

Wang H, Wang R, Lu T, Yao S. Purification and characterization of a halotolerant endoglucanase from marine Aspergilla niger. J Chem Eng Chin Univ, 2016, 30(02): 410-416.

[37]

Wise AA, Liu Z, Binns AN. Wang K. Three methods for the introduction of foreign DNA into Agrobacterium. Agrobacterium protpcols, 2006, Totowa: Humana Press.

[38]

Wood TM, Bhat KM. Methods for measuring cellulase activity. Method Enzymol, 1988, 160: 87-112.

[39]

Xue D, Chen H, Lin D, Guan Y, Yao S. Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology. Appl Biochem Biotech, 2012, 167(7): 1963-1972.

[40]

Xue D, Liang L, Lin D, Gong C, Yao S. Halostable catalytic properties of exoglucanase from a marine Aspergillus niger and secondary structure change caused by high salinities. Process Biochem, 2017, 58: 85-91.

[41]

Xue D, Liang L, Lin D, Yao S. Thermal inactivation kinetics and secondary structure change of a low molecular weight halostable exoglucanase from a marine Aspergillus niger at high salinities. Appl Biochem Biotech, 2017, 183(3): 1111-1125.

[42]

Xue D, Liang L, Zheng G, Lin D, Zhang Q, Yao S. Expression of Piromyces rhizinflata cellulase in marine Aspergillus niger to enhance halostable cellulase activity by adjusting enzyme-composition. Biochem Eng J, 2017, 117: 156-161.

[43]

Yu H, Yan Y, Zhang C, Dalby PA. Two strategies to engineer flexible loops for improved enzyme thermostability. Sci Rep, 2017

[44]

Zhang T, Datta S, Eichler J, Ivanova N, Axen SD, Kerfeld CA, Chen F, Kyrpides N, Hugenholtz P, Cheng J, Sale KL, Simmons B, Rubin E. Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance. Green Chem, 2011, 13(8): 2083.

[45]

Zhang G, Li S, Xue Y, Mao L, Ma Y. Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles, 2012, 16(1): 35-43.

Funding

National Natural Science Foundation of China(21576233)

Fundamental Research Funds for the Central Universities

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/