Biodegradation of plastic polymers by fungi: a brief review

Munuru Srikanth , T. S. R. S. Sandeep , Kuvala Sucharitha , Sudhakar Godi

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 42

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 42 DOI: 10.1186/s40643-022-00532-4
Review

Biodegradation of plastic polymers by fungi: a brief review

Author information +
History +
PDF

Abstract

Plastic polymers are non-degradable solid wastes that have become a great threat to the whole world and degradation of these plastics would take a few decades. Compared with other degradation processes, the biodegradation process is the most effective and best way for plastic degradation due to its non-polluting mechanism, eco-friendly nature, and cost-effectiveness. Biodegradation of synthetic plastics is a very slow process that also involves environmental factors and the action of wild microbial species. In this plastic biodegradation, fungi play a pivotal role, it acts on plastics by secreting some degrading enzymes, i.e., cutinase`, lipase, and proteases, lignocellulolytic enzymes, and also the presence of some pro-oxidant ions can cause effective degradation. The oxidation or hydrolysis by the enzyme creates functional groups that improve the hydrophilicity of polymers, and consequently degrade the high molecular weight polymer into low molecular weight. This leads to the degradation of plastics within a few days. Some well-known species which show effective degradation on plastics are Aspergillus nidulans, Aspergillus flavus, Aspergillus glaucus, Aspergillus oryzae, Aspergillus nomius, Penicillium griseofulvum, Bjerkandera adusta, Phanerochaete chrysosporium, Cladosporium cladosporioides, etc., and some other saprotrophic fungi, such as Pleurotus abalones, Pleurotus ostreatus, Agaricus bisporus and Pleurotus eryngii which also helps in degradation of plastics by growing on them. Some studies say that the degradation of plastics was more effective when photodegradation and thermo-oxidative mechanisms involved with the biodegradation simultaneously can make the degradation faster and easier. This present review gives current knowledge regarding different species of fungi that are involved in the degradation of plastics by their different enzymatic mechanisms to degrade different forms of plastic polymers.

Keywords

Biodegradation / Plastic polymers / Plastic degradation / Fungi / Degrading enzymes

Cite this article

Download citation ▾
Munuru Srikanth, T. S. R. S. Sandeep, Kuvala Sucharitha, Sudhakar Godi. Biodegradation of plastic polymers by fungi: a brief review. Bioresources and Bioprocessing, 2022, 9(1): 42 DOI:10.1186/s40643-022-00532-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abd El-Rehim HA, Hegazy El-Sayed A, Ali AM, Rabie AM. Synergistic effect of combining UV-sunlight–soil burial treatment on the biodegradation rate of LDPE/starch blends. J Photoch Photobio A, 2004, 163: 547-556.

[2]

Alariqi SAS, Pratheep Kumar A, Rao BSM, Singh RP. Biodegradation of γsterilised biomedical polyolefins under composting and fungal culture environments. Polym Degrad Stabil, 2006, 91: 1105-1116.

[3]

Ali MI, Ahmed S, Robson G, . Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J Basic Microbiol, 2014, 54(1): 18-27.

[4]

Alisch-Mark M, Herrmann A, Zimmermann W. Increase of the hydrophilicity of polyethylene terephthalate fibers by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi. Biotechnol Lett, 2006, 28: 681-685.

[5]

Alshehrei F. Biodegradation of synthetic and natural plastic by microorganisms. J Appl Environ Microbiol, 2017, 5: 8-19.

[6]

Álvarez-Barragán J, Domínguez-Malfavón L, Vargas-Suárez M, González-Hernández R, Aguilar-Osorio G, Loza-Tavera H. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Appl Environ Microbiol, 2016, 82: 5225-5235.

[7]

Arefian M, Zia M, Tahmourespour A, . Polycarbonate biodegradation by isolated molds using clear-zone and atomic force microscopic methods. Int J Environ Sci Technol, 2013, 10: 1319-1324.

[8]

Artham T, Doble M. Biodegradation of physicochemically treated polycarbonate by fungi. Biomacromol, 2010, 11(1): 20-28.

[9]

Arutchelvi J, Sudhakar M, Arkatkar AD, Mukesh B, Sumit U, Parasu V. Biodegradation of polyethylene and polypropylene. IJBT, 2021, 7(1): 9-22.

[10]

Awaja F, Pavel D. Recycling of PET. Eur Polym J, 2005, 41(1453–1477): 39.

[11]

Behzad K, Nadir A, Mohammad, Dahmardeh G, Mohammad D (2021) Effect of fungal degradation on technological properties of carbon nanotubes reinforced polypropylene/rice straw composites. Poylm Polym Composit 29(5): 303–310

[12]

Bergeret A, Ferry L, Ienny P. Influence of the fibre/matrix interface on ageing mechanisms of glass fibre reinforced thermoplastic composites (PA-6,6, PET, PBT) in a hygrothermal environment. Polym Degrad Stabil, 2009, 94: 1315-1324.

[13]

Bhardwaj H, Gupta R, Tiwari A. Microbial population associated with plastic degradation. Open Access Sci Rep, 2012, 1: 1-4.

[14]

Bholay AD, Borkhataria V, Jadhav U, Palekar S, Dhalkari V, Nalawade PM, . Bacterial lignin peroxidase: a tool for biolecching and biodegradation of industrial effluents. Univ J Environ Res Technol, 2012, 2: 58-64.

[15]

Bo RK, Soo BK, Hyun AS, Tae KL. Accelerating the biodegradation of high-density polyethylene (HDPE) using Bjerkandera adusta TBB-03 and Lignocellulose Substrates. MDPI Microorganisms, 2019, 7: 304.

[16]

Bonhomme S, Cuer A, Delort A, Lemaire J, Sancelme M, Scott G. Environmental biodegradation of polyethylene. Polym Degrad Stab, 2003, 81: 441-452.

[17]

Brunner I, Fischer M, Rüthi J, Stierli B, Frey B. Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS ONE, 2018, 13(8): 1-14.

[18]

Bryant JA, Clemente TM, Viviani DA, Fong AA, Thomas KA, Kemp P, Karl DM, White AE, DeLong EF. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems, 2016, 1(3): e00024-e116.

[19]

Butnaru E, Darie-Niţă RN, Zaharescu T, Balaeş T, Tănase C, Hitruc G, . Gamma irradiation assisted fungal degradation of the polypropylene/biomass composites. Radiat Phys Chem, 2016, 125: 134-144.

[20]

Byuntae L, Anthony LP, Alfred F, Theodore BB. Biodegradation of degradable plastic polyethylene by Phanerocheate and Streptomyces species. Appl Environ Microbiol, 1991, 3: 678-688.

[21]

Carniel A, Valoni É, Nicomedes J, Gomes ADC, Castro AMD. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem, 2017, 59: 84-90.

[22]

Chen S, Su L, Chen J, Wu J. Cutinase: characteristics, preparation and application. Biotechnol Adv, 2013, 31: 1754-1767.

[23]

Coe JM, Andersson S, Rogers DB (1997) Marine debris in the Caribbean Region. In: Coe JM, Rogers DB (eds) Marine debris. Springer Series on Environmental Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8486-1_4

[24]

Cosgrove L, McGeechan PL, Robson GD, Handley PS. Fungal communities associated with degradation of polyester polyurethane in soil. Appl Environ Microbiol, 2007, 73: 5817-5824.

[25]

Črešnar B, Petrič Š. Cytochrome P450 enzymes in the fungal kingdom. Bbaproteins Proteom, 2011, 1814: 29-35.

[26]

da Luz JMR, Paes SA, Nunes MD, da Silva MdCS, Kasuya MCM. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS ONE, 2013, 8(8

[27]

Danso D, Chow J, Streit WR. Plastics: environmental and bio technological perspectives on microbial degradation. Appl Environ Microbiol, 2019, 85: 1-14.

[28]

Dashtban M, Schraft H, Syed TA. Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol, 2010, 1(1): 36-50.

[29]

Eberl A, Heumann S, Brueckner T, Araujo R, Cavaco-Paulo A, Kaufmann F, . Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl)terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol, 2009, 143: 207-212.

[30]

Esmaeili A, Pourbabaee AA, Alikhani HA, Shabani F, Esmaeili E. Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS ONE, 2013, 8: 717-720.

[31]

Fischer I, Schmitt WF, Porth H, Allsopp MW, Vianello G (2014) Poly (vinyl chloride). In; Ullmann’s encyclopedia of industrial chemistry. Wiley, Germany

[32]

Frazer AC. Drake HL. O-methylation and other transformations of aromatic compounds by acetogenic bacteria. Acetogenes, 1994, New York: Chapman & Hall, 1994.

[33]

Furukawa M, Kawakami N, Tomizawa A, . Efficient degradation of poly (ethylene terephthalate) with Thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches. Sci Rep, 2019, 9: 16038.

[34]

Gama N, Ferreira A, Barros-Timmons A. Polyurethane foams: past, present, and future. Materials, 2018, 11(10): 1841.

[35]

Ganesh P, Dineshraj D, Yoganathan K. Production and screening of depolymerising enzymes by potential bacteria and fungi isolated from plastic waste dump yard sites. Int J Appl Res, 2017, 3(3): 693-695.

[36]

Gautam R, Bassi AS, Yanful EK. Candida rugosa lipase-catalyzed polyurethane degradation in aqueous medium. Biotechnol Lett, 2007, 29: 1081-1086.

[37]

Geweret B, Plassmann MM, MacLeod M. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Processes Impacts, 2015, 17: 1513-1521.

[38]

Glaser JA (2019) Biological degradation of polymers in the Environment. Plastic Environ IntechOpen

[39]

Gorghiu LM, Jipa S, Zaharescu T, Setnescu R, Mihalcea I. The effect of metals on thermal degradation of polyethylenes. Polym Degrad Stab, 2004, 84(1): 7-11.

[40]

Griffin GJL. Synthetic polymers and the living environment. Pure Appl Chem, 1980, 52: 399-407.

[41]

Halina K, Dagmara O, Przemysław M, Hanna C. Effect of short wavelength UVirradiation on ageing of polypropylene/cellulose compositions. Polym Degrad Stabil, 2005, 88: 189-198.

[42]

Heredia A. Biochemical and biophysical characteristics of cutin, a plant barrier biopolymer. Biochim Biophys Acta, 2003, 1620: 1-7.

[43]

Hock OG, Lum HW, De Qin D, Kee WK, Shing WL (2019) The growth and laccase activity of edible mushrooms involved in plastics degradation, Researchgate. Toxicology. 15

[44]

Hofrichter M, Ullrich R. Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol, 2006, 71(3): 276-288.

[45]

Iiyoshi Y, Tsutsumi Y, Nishida T. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci, 1998, 44: 222-229.

[46]

Jakubowicz I. Evaluation of degradability of biodegradable polyethylene (PE). Polym Degrad Stabil, 2003, 80: 39-43.

[47]

Jeon H, Durairaj P, Lee D, Ahsan MM, Yun H. Improved NADPH regeneration for fungal cytochrome P450 monooxygenase by co-expressing bacterial glucose dehydrogenase in resting-cell biotransformation of recombinant yeast. Microbiol Biotechnol J, 2016, 26: 2076-2086.

[48]

John Scheirs, Duane P (2003) Modern styrenic copolymers. Wiley, pp. 3. ISBN 978-0-471-49752-3

[49]

Karich A, Ullrich R, Scheibner K, Hofrichter M. Fungal unspecific peroxygenases oxidize the majority of organic EPA priority pollutants. Front Microbiol, 2017, 8: 1463.

[50]

Kawai F, Kawabata T, Oda M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl Microbiol Biotechnol, 2019, 103: 4253-4268.

[51]

Khan S, Nadir S, Shah ZU, Shah AA, Karunarathna SC, Xu J, Khan A, Munir S, Hasan F. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environ Pollut, 2017, 225: 469-480.

[52]

Kint D, Muñoz-Guerra S. A review on the potential biodegradability of poly(ethylene terephthalate). Polym Int, 1999, 48: 346-352.

[53]

Kolattukudy PE, Brown L. Fate of naturally occurring epoxy acids: a soluble epoxide hydrase, which catalyzes cis hydration, from Fusarium solani pisi. Arch Biochem Biophys, 1975, 166(2): 599-607.

[54]

Kolattukudy PE, Purdy RE, Maiti IB. Lowenstein JM. Cutinases from fungi and pollen. Methods in enzymology, 1981, New York: Academic Press, 652.

[55]

Koutny M, Lemaire J, Delort AM. Biodegradation of polyethylene films with pro-oxidant additives. Chemosphere, 2006, 64: 1243-1252.

[56]

Krueger MC, Hofmann U, Moeder M, Schlosser D. Potential of wood-rotting fungi to attack polystyrene sulfonate and its depolymerisation by Gloeophyllum trabeum via hydroquinone-driven Fenton chemistry. PLoS ONE, 2015, 10: e0131773.

[57]

Kumar S, Das ML, Rebecca J, Sharmila S. Isolation and identification of LDPE degrading fungi from municipal solid waste. J Chem Pharm Res, 2013, 5(3): 78-81.

[58]

Lagauskas, Levinskaitė L, Pečiulytė D. Micromycetes as deterioration agents of polymeric materials. Int Biodeterior Biodegrad. 2009;52:233–242.

[59]

Lee B, Pometto AL, Fratzke A, Bailey TB. Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol, 1991, 57: 678-685.

[60]

Levchik SV, Weil ED. A review on thermal decomposition and combustion of thermoplastic polyesters. Polym Adv Technol, 2004, 15: 691-700.

[61]

Liebminger S, Eberl A, Sousa F, Heumann S, Fischer-Colbrie G, Cavaco-Paulo A, . Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum. Biocatal Biotransform, 2007, 25: 171-177.

[62]

Loredo-Treviño A, García G, Velasco-Téllez A, Rodríguez-Herrera R, Aguilar CN. Polyurethane foam as substrate for fungal strains. Adv Biosci Biotechnol, 2011, 2(2): 52-58.

[63]

Mathur G, Prasad R. Degradation of polyurethane by Aspergillus flavus (ITCC 6051) isolated from soil. Appl Biochem Biotechnol, 2012, 167: 1595-1602.

[64]

Milstein O, Gersonde R, Huttermann A, Chen MJ, Meister JJ. Fungal biodegradation of lignopolystyrene graft copolymers. Appl Environ Microbiol, 1992, 58: 3225-3232.

[65]

Montazer Z, Habibi Najafi MB, Levin DB. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can J Microbiol, 2019, 65: 1-11.

[66]

Motta O, Proto A, De Carlo F, De Caro F, Santoro E, Brunetti L, Capunzo M. Utilization of chemically oxidized polystyrene as co-substrate by filamentous fungi. Int J Hyg Environ Health, 2009, 212(1): 61-66.

[67]

Munari (2019) Enzymatic hydrolysis of poly (1,4-butylene 2,5-thiophenedicarboxylate) (PBTF) and poly(1,4-butylene 2,5-furandicarboxylate) (PBF) films: a comparison of mechanisms, Environ Int 130: 104852

[68]

Nunes CS, Kunamneni A (2018) “Chapter 7—laccases—properties and applications. In: Nunes CS, Kumar V (eds) Enzymes in Human and Animal Nutrition. Academic Press, Cambridge. pp. 133–161. https://doi.org/10.1016/b978-0-12-805419-2.00007-1.

[69]

O’Neill A, Araújo R, Casal M, Guebitz G, Cavaco-Paulo A. Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. Enzym Microb Technol, 2007, 40(7): 1801-1805.

[70]

Ojha N, Pradhan N, Singh S, Barla A, Shrivastava A, Khatua P, Rai V, Bose S. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep, 2017, 7: 39515.

[71]

Olicón-Hernández DR, González-López J, Aranda E. Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front Microbiol, 2017, 8: 1792.

[72]

Osma JF, Toca-Herrera JL, Rodríguez-Couto S. Uses of laccases in the food industry. Enzyme Res, 2010, 2010.

[73]

Oviedo-Anchundia R, del Castillo DS, Naranjo-Moran J, Francois N, Alvarez-Barreto J, Alarcon A, Villafuerte JS, Barcos-Arias M. Analysis of the degradation of polyethylene, polystyrene and polyurethane mediated by three filamentous fungi isolated from the Antarctica. Afr J Biotechnol, 2021, 20(2): 66-76.

[74]

Ozsagiroglu E, Iyisan B, Guvenilir YA. Biodegradation and Characterization studies of different kinds of polyurethenes with several enzyme solutions. Pol J Environ Studies, 2012, 6: 1777-1782.

[75]

Patel C, Yadav S, Rahi S, Dave A. Studies on biodiversity of fungal endophytes of indigenous monocotaceous and dicotaceous plants and evaluation of their enzymatic potentialities. Int J Sci Res Publ, 2013, 3: 1-5.

[76]

Pereira EB, De Castro HF, De Moraes FF, Zanin GM. Kinetic studies of lipase from Candida rugosa. Appl Biochem Biotechnol, 2001, 91: 739.

[77]

Phua SK, Castillo E, Anderson JM, Hiltner A. Biodegradation of a polyurethane in vitro. J Biomed Mater Res, 1987, 21: 231-246.

[78]

Pramila R, Vijaya Ramesh K. Biodegradation of low density polyethylene (LDPE) by fungi isolated from municipal landfill area. J Microbiol Biotech Res, 2011, 1(4): 131-136.

[79]

Raaman N, Rajitha N, Jayshree A, Jegadeesh R. Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Ind Res, 2012, 1: 313-316.

[80]

Restrepo-Florez JM, Bassi A, Thompson MR. Microbial degrada tion and deterioration of polyethylene—a review. Int Biodeterior Biodeg Radation, 2014, 88: 83-90.

[81]

Romero E, Speranza M, García-Guinea J, Martínez ÁT. María Jesús Martínez, an anamorph of the white-rot fungus Bjerkandera adusta capable of colonizing and degrading compact disc components. FEMS Microbiol Lett, 2007, 275(1): 122-129.

[82]

Ronqvist ÅM, Xie W, Lu W, Gross RA. Cutinase-catalyzed hydrolysis of poly(ethyleneterephthalate). Macromolecules, 2009, 42: 5128-5138.

[83]

Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C. Degradation of abiotically aged LDPE flms containing pro-oxidant by bacterial consortium. Polym Degrad Stab, 2008, 93: 1917-1922.

[84]

Russell JR. Biodegradation of polyester polyurethane by endophytic fungi. Am Soc Microbiol Appl Environ Microbiol., 2011, 77(17): 6076-6084.

[85]

Russell JR. Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol, 2011, 77: 6076-6084.

[86]

SanaSheik KR, Chandrashekar K, Swaroop HM. Somashekarappa, Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegrad, 2015, 105: 21-29.

[87]

Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv, 2009, 27: 85-194.

[88]

Schwartz M, Perrot T, Aubert E, Dumarçay S, Favier F, Gérardin P, Morel-Rouhier M, Mulliert G, Saiag F, Didierjean C, Gelhaye E. Molecular recognition of wood polyphenols by phase II detoxification enzymes of the white rot Trametes versicolor. Sci Rep, 2018, 8: 8472.

[89]

Sen SK, Raut S. Microbial degradation of low density polyethyl-ene (LDPE): a review. J Environ Chem Eng, 2015, 3: 462-473.

[90]

Seymour RB. Polymer science before and after 1899: notable developments during the lifetime of Maurtis Dekkar. J Macromol Sci Chem, 1989, 26(1989): 1023-1032.

[91]

Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnol Adv, 2008, 26: 246-265.

[92]

Shang J, Chai M, Zhu Y. Photocatalytic degradation of polystyrene plastic under fluorescent light. Environ Sci Technol, 2003, 37(19): 4494-4499.

[93]

Shimao M. Biodegradation of plastics. Curr Opin Biotechnol, 2001, 12: 242-247.

[94]

Shin J, Kim JE, Lee YW, Son H. Fungal Cytochrome P450s and the P450 complement (CYPome) of Fusarium graminearum. Toxins, 2018, 10: 112.

[95]

Singh B (2005) Harmful effect of plastic in animals. The Indian Cow.

[96]

Sivan A. New perspectives in plastic biodegradation. Curr Opin Biotechnol, 2011, 22: 422-426.

[97]

Souza PMD, Bittencourt MLDA, Caprara CC, Freitas MD, Almeida RPCD, Silveira D, . A biotechnology perspective of fungal proteases. Braz J Microbiol, 2015, 46(2): 337-346.

[98]

Šrejber M, Navrátilová V, Paloncýová M, Bazgier V, Berka K, Anzenbacher P, Otyepka M. Membrane-attached mammalian cytochromes P450: an overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J Inorg Biochem, 2018, 183: 117-136.

[99]

Thirunavukarasua K, Edwinolivera NG, DuraiAnbarasana S, Gowthamana MK, Iefujib H, Kamini NR. Removal of triglyceride soil from fabrics by a novel lipase from Cryptococcus sp. S-2. Process Biochem, 2008, 43: 701-706.

[100]

Tirupati S, Buddolla V, Akula SL, SaiGopal DVR. Production of laccase by Cochliobolus sp. isolated from plastic dumped soils and their ability to degrade low molecular weight PVC. Biochem Res Int, 2016, 2016: 10.

[101]

Tokiwa Y, Calabia BP. Biodegradability of plastics. Int J Mol Sci, 2009, 10: 3722-3742.

[102]

Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of plastics. Int J Mol Sci, 2009, 10(9): 3722-3742.

[103]

Umamaheswari S, Murali M. FTIR spectroscopic study of fungal degradation of poly(ethylene terephthalate) and polystyrene foam. Elixir Chem Engg, 2013, 64: 19159-19164.

[104]

Usha R, Sangeetha T, Palaniswamy M. Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agric Res Center J Int, 2011, 2(4): 200-204.

[105]

Van Gemeren IA, Beijersbergen A, Van den Hondel CAMJJ, Verrips CT. Expression and secretion of defined cutinase variants by Aspergillus awamori. Appl Environ Microbiol, 1998, 64: 2794-2799.

[106]

Vertommen MAME, Nierstrasz VA, van der Veer M, Warmoeskerken MMCG. Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol, 2005, 120: 376-386.

[107]

Vivi VK, Martins-Franchetti SM, Attili-Angelis D. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiol, 2018

[108]

Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS. Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol, 2000, 66: 3194-3200.

[109]

Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS (2020) Fungal colonization and biodeterioration of plasticized polyvinyl chloride. ASM J Appl Environ Microbiol 66(8)

[110]

Wei R, Oeser T, Then J, Kuhn N, Barth M, Schmidt J, Zimmermann W. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express, 2014, 4: 44.

[111]

Weiland M, Daro A, David C. Biodegradation of thermally oxidized polyethylene. Polym Degrad Stabil, 1995, 48: 275-289.

[112]

Whitney PJ. A comparison of two methods for testing defined formulations of PVC for resistance to fungal colonisation with two methods for the assessment of their biodegradation. Int Biodeterior Biodegrad, 1996, 37(3–4): 205-213.

[113]

Wu J, Xiao Y, Yu H. Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Biores Technol, 2005, 96(12): 1357-1363.

[114]

Yamamoto-Tamura K, Hiradate S, Watanabe T, . Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils. AMB Expr, 2015, 5: 10.

[115]

Zafar U, Houlden A, Robson GD. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures. Appl Environ Microbiol, 2013, 79: 7313-7324.

[116]

Zimmermann W, Billig S (2010) Enzymes for the biofunctionalization of poly (ethylene terephthalate). In: Nyanhongo GS, Steiner W, Gübitz G (eds) Biofunctionalization of polymers and their applications. Springer, New York, pp. 97–120. https://doi.org/10.1007/10_2010_87

AI Summary AI Mindmap
PDF

261

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/