Cytochrome C catalyzed oxygen tolerant atom-transfer radical polymerization

Peng-Cheng Xie , Xue-Qing Guo , Fu-Qiao Yang , Nuo Xu , Yuan-Yuan Chen , Xing-Qiang Wang , Hongcheng Wang , Yang-Chun Yong

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 41

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 41 DOI: 10.1186/s40643-022-00531-5
Research

Cytochrome C catalyzed oxygen tolerant atom-transfer radical polymerization

Author information +
History +
PDF

Abstract

Atom-transfer radical polymerization (ATRP) is a well-known technique for controlled polymer synthesis. However, the ATRP usually employed toxic heavy metal ionas as the catalyst and was susceptible to molecular oxygen, which made it should be conducted under strictly anoxic condition. Conducting ATRP under ambient and biocompatible conditions is the major challenge. In this study, cytochrome C was explored as an efficient biocatalyst for ATRP under biocompatible conditions. The cytochrome C catalyzed ATRP showed a relatively low polymer dispersity index of 1.19. More interestingly, the cytochrome C catalyzed ATRP showed superior oxygen resistance as it could be performed under aerobic conditions with high dissolved oxygen level. Further analysis suggested that the Fe(II) embed in the cytochrome C might serve as the catalytic center and methyl radical was responsible for the ATRP catalysis. This work explored new biocompatible catalyst for aerobic ATRP, which might open new dimension for practical ATRP and application of cytochrome C protein.

Keywords

Atom-transfer radical polymerization / Cytochrome / ATRPase / Biocompatibility / Aerobic condition

Cite this article

Download citation ▾
Peng-Cheng Xie, Xue-Qing Guo, Fu-Qiao Yang, Nuo Xu, Yuan-Yuan Chen, Xing-Qiang Wang, Hongcheng Wang, Yang-Chun Yong. Cytochrome C catalyzed oxygen tolerant atom-transfer radical polymerization. Bioresources and Bioprocessing, 2022, 9(1): 41 DOI:10.1186/s40643-022-00531-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ando T, Kamigaito M, Sawamoto M. Iron(II) chloride complex for living radical polymerization of methyl methacrylate1. Macromolecules, 1997, 30: 2216-2218.

[2]

Collman JP, Boulatov R, Sunderland CJ, Fu L. Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem Rev, 2004, 104: 561-588.

[3]

Dadashi-Silab S, Matyjaszewski K. Iron catalysts in atom transfer radical polymerization. Molecules, 2020, 25(7): 1648.

[4]

Debuigne A, Caille JR, Jerome R. Highly efficient cobalt-mediated radical polymerization of vinyl acetate. Angew Chem Int Ed, 2005, 44: 1101-1104.

[5]

di Lena F, Matyjaszewski K. Transition metal catalysts for controlled radical polymerization. Prog Polym Sci, 2010, 35: 959-1021.

[6]

Divandari M, Pollard J, Dehghani E, Bruns N, Benetti EM. Controlling enzymatic polymerization from surfaces with switchable bioaffinity. Biomacromolecules, 2017, 18: 4261-4270.

[7]

Fan G, Dundas CM, Graham AJ, Lynd NA, Keitz BK. Shewanella oneidensis as a living electrode for controlled radical polymerization. Proc Natl Acad Sci USA, 2018, 115: 4559-4564.

[8]

Fan G, Graham AJ, Kolli J, Lynd NA, Keitz BK. Aerobic radical polymerization mediated by microbial metabolism. Nat Chem, 2020, 12: 638-646.

[9]

Iwahashi H, Nishizaki K, Takagi I. Cytochrome c catalyses the formation of pentyl radical and octanoic acid radical from linoleic acid hydroperoxide. Biochem J, 2002, 361: 57-66.

[10]

Jiang W, Wang X, Chen J, Liu Y, Han H, Ding Y, Li Q, Tang J. Deuterohemin-peptide enzyme mimic-embedded metal-organic frameworks through biomimetic mineralization with efficient ATRP catalytic activity. ACS Appl Mater Interfaces, 2017, 9: 26948-26957.

[11]

Liarou E, Whitfield R, Anastasaki A, Engelis NG, Jones GR, Velonia K, Haddleton DM. Copper-mediated polymerization without external deoxygenation or oxygen scavengers. Angew Chem Int Ed, 2018, 57: 8998-9002.

[12]

Marques HM. Insights into porphyrin chemistry provided by the microperoxidases, the haempeptides derived from cytochrome c. Dalton Trans, 2007, 39: 4371-4385.

[13]

Matyjaszewski K, Fu LF, Russell AR, Enciso A. A breathing ATRP: fully oxygen tolerant polymerization inspired by aerobic respiration of cells. Angew Chem Int Ed, 2017, 57: 933-936.

[14]

Matyjaszewski K, Enciso AEE, Fu LF, Lathwal S, Olszewski MO, Wang ZW, Das SD, Russell AJ. Biocatalytic “oxygen-fueled” atom transfer radical polymerization. Angew Chem Int Ed, 2018, 57: 16157-16161.

[15]

Ng Y-H, di Lena F, Chai CL. PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water. Chem Commun, 2011, 47: 6464-6466.

[16]

Ng Y-H, di Lena F, Chai CL. Metalloenzymatic radical polymerization using alkyl halides as initiators. Polymer Chem, 2011, 2: 589-594.

[17]

Nothling MD, Cao HW, McKenzie TG, Hocking DM, Strugnell RA, Qiao GG. Bacterial redox potential powers controlled radical polymerization. J Am Chem Soc, 2021, 143: 286-293.

[18]

Ouchi M, Terashima T, Sawamoto M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev, 2009, 109: 4963-5050.

[19]

Pan X, Lathwal S, Mack S, Yan J, Das SR, Matyjaszewski K. Automated synthesis of well-defined polymers and biohybrids by atom transfer radical polymerization using a DNA synthesizer. Angew Chem Int Ed, 2017, 56: 2740-2743.

[20]

Pan XC, Fantin M, Yuan F, Matyjaszewski K. Externally controlled atom transfer radical polymerization. Chem Soc Rev, 2018, 47: 5457-5490.

[21]

Ribelli TG, Lorandi F, Fantin M, Matyjaszewski K. Atom transfer radical polymerization: billion times more active catalysts and new initiation systems. Macromol Rapid Commun, 2018, 40: 1800616.

[22]

Rodriguez KJ, Gajewska B, Pollard J, Pellizzoni MM, Fodor C, Bruns N. Repurposing biocatalysts to control radical polymerizations. ACS Macro Lett, 2018, 7: 1111.

[23]

Sigg SJ, Seidi F, Renggli K, Silva TB, Kali G, Bruns N. Horseradish peroxidase as a catalyst for atom transfer radical polymerization. Macromol Rapid Commun, 2011, 32: 1710-1715.

[24]

Silva TB, Spulber M, Kocik MK, Seidi F, Charan H, Rother M, Sigg SJ, Renggli K, Kali G, Bruns N. Hemoglobin and red blood cells catalyze atom transfer radical polymerization. Biomacromolecules, 2013, 14: 2703-2712.

[25]

Simakova A, Mackenzie M, Averick SE, Park S, Matyjaszewski K. Bioinspired iron-based catalyst for atom transfer radical polymerization. Angew Chem Int Ed, 2013, 52: 12148-12151.

[26]

Szczepaniak G, Fu LY, Jafari H, Kapil K, Matyjaszewski K. Making ATRP more practical: oxygen tolerance. Acc Chem Res, 2021, 54: 1779-1790.

[27]

Wang JS, Matyjaszewski K. Controlled living radical polymerization—atom-transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc, 1995, 117: 5614-5615.

[28]

Wang Y, Fu L, Matyjaszewski K. Enzyme-deoxygenated low parts per million atom transfer radical polymerization in miniemulsion and ab initio emulsion. ACS Macro Lett, 2018, 7: 1317-1321.

[29]

Xia S, Yang B, Li G, Zhu X, Wang A, Zhu J. Polymerization of 4-vinylpyridine and N,N-dimethylacrylamide using a system without organic initiator. Polym Chem, 2011, 2: 2356-2359.

[30]

Yamashita K, Yamamoto K, Kadokawa J. Atom transfer radical polymerization of N-isopropylacrylamide by enzyme mimetic catalyst. Polymer, 2013, 54: 1775-1778.

[31]

Yeow J, Chapman R, Gormley AJ, Boyer C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem Soc Rev, 2018, 47: 4357-4387.

[32]

Yu MA, Egawa T, Shinzawa-Itoh K, Yoshikawa S, Yeh SR, Rousseau DL, Gerfen GJ. Radical formation in cytochrome c oxidase. Biochim Biophys Acta, 2011, 1807: 1295-1304.

[33]

Yu Y-Y, Wang Y-Z, Fang Z, Shi Y-T, Cheng Q-W, Chen Y-X, Shi W, Yong Y-C. Single cell electron collectors for highly efficient wiring-up electronic abiotic/biotic interfaces. Nat Commun, 2020, 11: 4087.

[34]

Yuan M, Cui XT, Zhu WX, Tang HD. Development of environmentally friendly atom transfer radical polymerization. Polymers, 2020, 12: 32.

[35]

Yurkova I, Huster D, Arnhold J. Free radical fragmentation of cardiolipin by cytochrome c. Chem Phys Lipids, 2009, 158: 16-21.

Funding

National Basic Research Program of China (973 Program)(2021YFA0910400)

National Natural Science Foundation of China(52170081)

a Project of Faculty of Agricultural Equipment of Jiangsu University

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/