Effects of cadmium sulfide nanoparticles on sulfate bioreduction and oxidative stress in Desulfovibrio desulfuricans

Guoqing Cheng , Huili Ding , Guanglin Chen , Hongjie Shi , Xu Zhang , Minglong Zhu , Wensong Tan

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 35

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 35 DOI: 10.1186/s40643-022-00523-5
Research

Effects of cadmium sulfide nanoparticles on sulfate bioreduction and oxidative stress in Desulfovibrio desulfuricans

Author information +
History +
PDF

Abstract

Efficiency of bioreduction of sulfate and biomass can be increased by CdS NPs.

It is important for the EPS of RSB to improve the sulfate reduction efficiency.

Utilization efficiency of extracellular electrons by RSB can be enhanced through EPS.

Humic acid can alleviate the oxidative stress induced by CdS NPs to SRB.

Keywords

Desulfovibrio desulfuricans / Cadmium sulfide nanoparticles / Sulfate reduction / Extracellular polymeric substances (EPS) / Oxidative stress

Cite this article

Download citation ▾
Guoqing Cheng, Huili Ding, Guanglin Chen, Hongjie Shi, Xu Zhang, Minglong Zhu, Wensong Tan. Effects of cadmium sulfide nanoparticles on sulfate bioreduction and oxidative stress in Desulfovibrio desulfuricans. Bioresources and Bioprocessing, 2022, 9(1): 35 DOI:10.1186/s40643-022-00523-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aboulaich A, Billaud D, Abyan M, Balan L, Gaumet JJ, Medjadhi G, Ghanbaja J, Schneider R. One-Pot Noninjection Route to CdS Quantum Dots via Hydrothermal Synthesis. ACS Appl Mater Interfaces, 2012, 4(5): 2561-2569.

[2]

Akhil K, Sudheer Khan S. Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems. J Photoch Photobio B, 2017, 167: 136-149.

[3]

Alipour A, Mansour Lakouraj M, Tashakkorian H. Study of the effect of band gap and photoluminescence on biological properties of polyaniline/CdS QD nanocomposites based on natural polymer. Sci Rep, 2021, 11: 1913.

[4]

Behera N, Arakha M, Priyadarshinee M, Pattanayak BS, Soren S, Jha S, Mallick BC. Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Adv, 2019, 9: 24888-24894.

[5]

Cao B, Shi L, Brown RN, Xiong Y, Fredrickson JK, Romine MF, Marshall MJ, Lipton MS, Beyenal H. Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol, 2011, 13: 1018-1031.

[6]

Chandran P, Kumari P, Khan SS. Photocatalytic activation of CdS NPs under visible light for environmental cleanup and disinfection. Sol Energy, 2014, 105(9): 542-547.

[7]

Dai YF, Xiao Y, Zhang EH, Liu LD, Zhao F. Effective methods for extracting extracellular polymeric substances from Shewanella oneidensis MR-1. Water Sci Technol, 2016, 74(12): 2987-2996.

[8]

Deng CH, Gong JL, Zeng GM, Jiang Y, Zhang C, Liu HY, Huan SY. Graphene–CdS nanocomposite inactivation performance toward Escherichia coli in the presence of humic acid under visible light irradiation. Chem Eng J, 2016, 284: 41-53.

[9]

Deng Q, Wu X, Wang Y, Liu M. Activity characteristics of sulfate reducing bacteria and formation mechanism of hydrogen sulfide. Appl Ecol Environ Res, 2018, 16(5): 6369-6383.

[10]

Deng X, Dohmae N, Kaksonen AH, Okamoto A. Biogenic Iron Sulfide Nanoparticles to Enable Extracellular Electron Uptake in Sulfate-Reducing Bacteria. Angew Chem Int Ed, 2020, 59(15): 5995-5999.

[11]

Dong G, Wang H, Yan Z, Zhang Z, Ji X, Lin M, Dahlgren R, Shang S, Zhang M, Chen Z. Cadmium sulfide nanoparticles-assisted intimate coupling of microbial and photoelectrochemical processes. Sci Toal Environ, 2020, 740: 140080.

[12]

Draper HH, Hadley M. Malondialdehyde determination as index of lipid Peroxidation. Method Enzymol, 1990, 186: 421-431.

[13]

Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B, 2012, 94: 143-150.

[14]

Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: The House of Biofilm cells. J Bacteriol, 2007, 189: 7945-7947.

[15]

Gai P, Yu W, Zhao H, Qi R, Li F, Liu L, Lv F, Wang S. Solar-Powered Organic Semiconductor-Bacteria Biohybrids for CO2 Reduction into Acetic Acid. Angew Chem Int Ed, 2020, 59(18): 7224-7229.

[16]

Gómez-Ordóñez E, Rupérez P. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll, 2011, 25(6): 1514-1520.

[17]

Jing Y, Wan J, Angelidaki I, Zhang S, Luo G. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite. Water Res, 2017, 108: 212-221.

[18]

Kornienko N, Sakimoto KK, Herlihy DM, Nguyen SC, Alivisatos AP, Harris CB, Schwartzberg A, Yang P. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. PNAS, 2016, 113(42): 11750-11755.

[19]

Lang D, Xiang Q, Qiu G, Feng X, Liu F. Effects of crystalline phase and morphology on the visible light photocatalytic H2-production activity of CdS nanocrystals. Dalton Trans, 2014, 43(19): 7245-7253.

[20]

Li X, Liu H, Luo D, Li J, Huang Y, Li H, Fang Y, Xu Y, Zhu L. Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem Eng J, 2012, 180: 151-158.

[21]

Li SW, Sheng GP, Cheng YY, Yu HQ. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria. Sci Rep, 2016, 6(1): 39098.

[22]

Li Y, Luo Q, Li H, Chen Z, Shen L, Peng Y, Wang H, He N, Li Q, Wang Y. Application of 2-hydroxy-1,4-naphthoquinone- graphene oxide (HNQ-GO) composite as recyclable catalyst to enhance Cr(VI) reduction by Shewanella xiamenensis. J Chem Technol Biot, 2019, 94: 446-454.

[23]

Lin W, Huang YW, Zhou XD, Ma Y. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells. Int J Toxicol, 2006, 25(6): 451-457.

[24]

Liu Z, Li L, Li Z, Tian XR. Removal of sulfate and heavy metals by sulfate- reducing bacteria in an expanded granular sludge bed reactor. Envir Tech, 2018, 39(14): 1814-1822.

[25]

Lovley DR. Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology, 2008, 6(3): 225-231.

[26]

Melgao L, Quites NC, Leao V. Phosphogypsum as sulfate source for Sulfate- reducing Bacteria in a continuous fluidized-bed reactor. Eng Sanit Ambient, 2020, 25(1): 157-165.

[27]

Peck PHDJ, Van Beeumen J. Biochemistry of dissimilatory sulphate reduction. PHILOS T R SOC B, 1982, 298(1093): 443-466.

[28]

Prabhu RR, Khadar MA. Characterization of chemically synthesized CdS nanoparticles. Pramana, 2005, 65(5): 801-807.

[29]

Radić S, Vujčić V, Cvetković Ž, Cvjetko P, Oreščanin V. The efficiency of combined CaO/electrochemical treatment in removal of acid mine drainage induced toxicity and genotoxicity. Sci Total Environ, 2014, 466–467(1): 84-89.

[30]

Ren L, Dong Y, Zhong W. Enhanced enzyme activity through electron transfer between single-walled carbon nanotubes and horseradish peroxidase. Carbon, 2012, 50(3): 1303-1310.

[31]

Riaz S, Raza ZA, Majeed MI. Preparation of cadmium sulfide nanoparticles and mediation thereof across poly(hydroxybutyrate) nanocomposite. Polym Bull, 2019, 77: 775-791.

[32]

Sathishkumar K, Li Y, Sanganyado E. Electrochemical behavior of biochar and its effects on microbial nitrate reduction: role of extracellular polymeric substances in extracellular electron transfer. Chem Eng J, 2020, 395.

[33]

Shang E, Niu J, Yang L, Zhou Y, Crittenden JC. Comparative toxicity of Cd, Mo, and W sulphide nanomaterials toward E. coli under UV irradiation. Environ Pollut, 2017, 224: 606-614.

[34]

Shang E, Li Y, Niu J, Zhou Y, Wang T, Crittenden JC. Relative importance of humic and fulvic acid on ROS generation, dissolution, and toxicity of sulfide nanoparticles. Water Res, 2017, 124: 595-604.

[35]

Sun M, Li W, Mu Z, Wang H, Yu H, Li Y, Harada H. Selection of effective methods for extracting extracellular polymeric substances (EPSs) from Bacillus megaterium TF10. Sep Purif Technol, 2012, 95: 216-221.

[36]

Wang B, Xiao K, Jiang Z, Wang J, Yu J-C, Wong P-K. Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy Environ Sci, 2019, 12(7): 2185-2191.

[37]

Wang B, Zeng C, Chu KH, Wu D, Yip HY, Ye L, Wong PK. Enhanced Biological Hydrogen Production from Escherichia coli with Surface Precipitated Cadmium Sulfide Nanoparticles. Adv Energy Mater, 2017, 7(29): 1700611-1700611.

[38]

Wang Q, Kang F, Gao Y, Mao X, Hu X. Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity. Sci Rep, 2016, 6(1): 21379.

[39]

Wolf M, Kappler A, Jiang J, Meckenstock RU. Effects of Humic Substances and Quinones at Low Concentrations on Ferrihydrite Reduction by Geobacter metallireducens. Environ Sci Technol, 2009, 43(15): 5679-5685.

[40]

Xiao Y, Zhao F. Electrochemical roles of extracellular polymeric substances in biofilms. Curr Opin Electrochem, 2017, 4: 206-211.

[41]

Xiao Y, Zhang E, Zhang J, Dai Y, Yang Z, Christensen HEM, Ulstrup J, Zhao F. Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Sci Adv, 2017, 3(7

[42]

Yan J, Ye W, Liang X, Wang S, Xie J, Zhong K, Bao M, Yang J, Wen H, Li S, Chen Y, Gu J, Zhang H. Enhanced reduction of sulfate and chromium under sulfate-reducing condition by synergism between extracellular polymeric substances and graphene oxide. Environ Res, 2020, 183: 109157.

[43]

Zhu N, Tang J, Tang C, Duan PF. Combined CdS nanoparticles-assisted photocatalysis and periphytic biological processes for nitrate removal. Chem Eng J, 2018, 353: 237-245.

Funding

National Natural Science Foundation of China(No. 21878083)

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/