De novo biosynthesis of τ-cadinol in engineered Escherichia coli

Yue Sun , Shaoting Wu , Xiao Fu , Chongde Lai , Daoyi Guo

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 29

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 29 DOI: 10.1186/s40643-022-00521-7
Research

De novo biosynthesis of τ-cadinol in engineered Escherichia coli

Author information +
History +
PDF

Abstract

τ-Cadinol is a sesquiterpene that is widely used in perfume, fine chemicals and medicines industry. In this study, we established a biosynthetic pathway for the first time in engineered Escherichia coli for production of τ-cadinol from simple carbon sources. Subsequently, we further improved the τ-cadinol production to 35.9 ± 4.3 mg/L by optimizing biosynthetic pathway and overproduction of rate-limiting enzyme IdI. Finally, the titer was increased to 133.5 ± 11.2 mg/L with a two-phase organic overlay-culture medium system. This study shows an efficient method for the biosynthesis of τ-cadinol in E. coli with the heterologous hybrid MVA pathway.

Keywords

Metabolic engineering / Escherichia coli / τ-Cadinol / MVA

Cite this article

Download citation ▾
Yue Sun, Shaoting Wu, Xiao Fu, Chongde Lai, Daoyi Guo. De novo biosynthesis of τ-cadinol in engineered Escherichia coli. Bioresources and Bioprocessing, 2022, 9(1): 29 DOI:10.1186/s40643-022-00521-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersson M, Bergendorff O, Shan R, Zygmunt P, Sterner O. Minor components with smooth muscle relaxing properties from scented myrrh (Commiphoraguidotti). Planta Med, 1997, 63: 251-254.

[2]

Chen H, Liu C, Li M, Zhang H, Xian M, Liu H. Directed evolution of mevalonate kinase in Escherichiacoli by random mutagenesis for improved lycopene. RSC Adv, 2018, 8(27): 15021-15028.

[3]

Chonglong W, Sang-Hwal Y, Asad A, Shah Y-R, Chung J-Y. Farnesol production from Escherichiacoli by harnessing the exogenous mevalonate pathway. Biotechnol Bioeng, 2010, 107: 421-429.

[4]

Claeson P, Andersson R, Samuelsson G. T-cadinol: a pharmacologically active constituent of scented myrrh: introductory pharmacological characterization and high field 1H- and 13C-NMR data. Planta Med, 1991, 57(4): 352-356.

[5]

Claeson P, Zygmunt P, Hgesttt ED. Calcium antagonistic properties of the sesquiterpene T-cadinol: a comparison with nimodipine in the isolated rat aorta. Pharmacol Toxicol, 1991, 69(3): 173-177.

[6]

Claeson P, Rdstrm P, Skld O, Nilsson S, Hglund S. Bactericidal effect of the sesquiterpene T-cadinol on Staphylococcusaureus. Phytother Res, 1992, 6: 94-98.

[7]

Du J, Bae H-J, Guo L, Li Z, Yang J. Biosynthesis of beta-caryophyllene, a novel terpene-based high-density biofuel precursor, using engineered Escherichia coli. Renew Energy, 2016, 99.

[8]

Fei R, Hongjie M, Jin L, Jiang L, Kai S. Functional characterization of ZmTPS7 reveals a maize τ-cadinol synthase involved in stress response. Planta, 2016, 244: 1065-1074.

[9]

Frohwitter J, Heider S, Peters-Wendisch P, Beekwilder J, Wendisch VF. Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacteriumglutamicum. J Biotechnol, 2014, 191: 205-213.

[10]

Fujisaki S, Hara H, Nishimura Y, Horiuchi K, Nishino T. Cloning and nucleotide sequence of the ispA gene responsible for farnesyl diphosphate synthase activity in Escherichiacoli. J Biochem, 1990, 108: 995-1000.

[11]

Guo D, Kong S, Zhang L, Pan H, Chao W, Liu Z. Biosynthesis of advanced biofuel farnesyl acetate using engineered Escherichiacoli. Biores Technol, 2018, 269: 577-580.

[12]

Han GH, Kim SK, Yoon KS, Kang Y, Kim BS, Fu Y, Sung BH, Jung HC, Lee DH, Kim SW. Fermentative production and direct extraction of ()-α-bisabolol in metabolically engineered Escherichiacoli. Microb Cell Fact, 2016, 15: 185.

[13]

Harada H, Yu F, Okamoto S, Kuzuyama T, Utsumi R, Misawa N. Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichiacoli. Appl Microbiol Biotechnol, 2009, 81: 915-925.

[14]

Jullien F, Moja S, Bony A, Legrand S, Magnard JL. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandulaangustifolia. Plant Mol Biol, 2014, 84: 227-241.

[15]

Kang W, Ma T, Liu M, Qu J, Liu T. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nat Commun, 2019

[16]

Kong S, Fu X, Li X, Pan H, Guo D. De novo biosynthesis of linalool from glucose in Engineered Escherichia coli. Enzyme Microb Technol, 2020, 140.

[17]

Li L, Wang X, Li X, Shi H, Li X. Combinatorial engineering of mevalonate pathway and diterpenoid synthases in Escherichiacoli for cis-abienol production. J Agric Food Chem, 2019, 67: 6523-6531.

[18]

Li M, Hou F, Wu T, Jiang X, Li F, Liu H, Xian M, Zhang H. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Nat Prod Rep, 2020, 37: 80-99.

[19]

Liu M, Lin YC, Guo JJ, Du MM, Wei DZ. High-level production of sesquiterpene patchoulol in Saccharomycescerevisiae. ACS Synth Biol, 2021, 10: 158-172.

[20]

Martin V, Pitera D, Withers S. Engineering a mevalonate pathway in Escherichiacoli for production of terpenoids. Nat Biotechnol, 2003, 21: 796-802.

[21]

Mischko W, Hirte M, Fuchs M, Mehlmer N, Brück T. Identification of sesquiterpene synthases from the Basidiomycota Coniophoraputeana for the efficient and highly selective β-copaene and cubebol production in E. coli. Microb Cell Fact, 2018, 17: 164.

[22]

Nadja H, Julian W, Thomas B, Jonas F, Kyle L, Joe R, Petra PW, Olaf K, Volker W. Patchoulol production with metabolically engineered Corynebacteriumglutamicum. Genes, 2018, 9: 219.

[23]

Narita H, Yataga M, Ohira T. Chemical composition of the essential oils from bogwood of Cryptomeriajaponica D. Don. J Essent Oil Res, 2006, 18: 68-70.

[24]

Pascal L, Jean-Claude B, Désiré D, Pasteels J. Biosynthesis of defensive compounds from beetles and ants. Eur J Org Chem, 2003, 15: 2733-2743.

[25]

Qu Z, Zhang L, Zhu S, Yuan W, Sun J. Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast. Enzyme Microb Technol, 2019, 134.

[26]

Rad SA, Zahiri HS, Noghabi KA, Rajaei S, Heidari R, Mojallali L. Type 2 IDI performs better than type 1 for improving lycopene production in metabolically engineered E. coli strains. World J Microbiol Biotechnol, 2012, 28(1): 313-321.

[27]

Sun C, Dong X, Zhang R, Xie C. Effectiveness of recombinant Escherichia coli on the production of (R)-(+)-perillyl alcohol. BMC Biotechnol, 2021

[28]

Takei M, Umeyama A, Arihara S. T-cadinol and calamenene induce dendritic cells from human monocytes and drive Th1 polarization. Eur J Pharmacol, 2006, 537: 190-199.

[29]

Wu CL, Chien SC, Wang SY, Kuo YH, Chang ST. Structure-activity relationships of cadinane-type sesquiterpene derivatives against wood-decay fungi. Holzforschung, 2005, 10: 76-627.

[30]

Wu J, Cheng S, Cao J, Qiao J, Zhao GR. Systematic optimization of limonene production in engineered Escherichiacoli. J Agric Food Chem, 2019, 67: 7087-7097.

[31]

Yamada Y, Kuzuyama T, Komatsu M, Shinya K, Omura S, Cane DE, Ikeda H. Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci USA, 2015, 112: 857-862.

[32]

Yang J, Nie Q, MengFeng RH. Metabolic engineering of Escherichiacoli for the biosynthesis of alpha-pinene. Biotechnol Biofuels, 2013, 6(1): 60-60.

[33]

Yoona SH, Leea SH, Dasa A, Ryua HK. Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J Biotechnol, 2009, 140: 218-226.

[34]

Zhang C, Li M, Zhao GR, Lu W. Alpha-Terpineol production from an engineered Saccharomycescerevisiae cell factory. Microb Cell Fact, 2013, 18: 160.

[35]

Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichiacoli. Biotechnol Bioeng, 2014, 111(7): 1396-1405.

[36]

Zong Z, Hua Q, Tong X, Li D, Liu Z. Biosynthesis of nerol from glucose in the metabolic engineered Escherichiacoli. Bioresour Technol, 2019, 289.

Funding

National Natural Science Foundation of China(31960216)

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/