A novel accessory protein ArCel5 from cellulose-gelatinizing fungus Arthrobotrys sp. CX1

Yue Yuan , Chunshu Chen , Xueyan Wang , Shaonian Shen , Xiaoyu Guo , Xiaoyi Chen , Fan Yang , Xianzhen Li

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 27

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 27 DOI: 10.1186/s40643-022-00519-1
Research

A novel accessory protein ArCel5 from cellulose-gelatinizing fungus Arthrobotrys sp. CX1

Author information +
History +
PDF

Abstract

Improved understanding of cellulose swelling mechanism is beneficial for increasing the hydrolysis efficiency of cellulosic substrates. Here, we report a family 5 glycoside hydrolase ArCel5 isolated from the cellulose-gelatinizing fungus Arthrobotrys sp. CX1. ArCel5 exhibited low specific hydrolysis activity and high cellulose swelling capability, which suggested that this protein might function as an accessory protein. Homology modeling glycosylation detection revealed that ArCel5 is a multi-domain protein including a family 1 carbohydrate-binding module, a glycosylation linker, and a catalytic domain. The adsorption capacity, structural changes and hydrature index of filter paper treated by different ArCel5 mutants demonstrated that CBM1 and linker played an essential role in recognizing, binding and decrystallizing cellulosic substrates, which further encouraged the synergistic action between ArCel5 and cellulases. Notably, glycosylation modification further strengthened the function of the linker region. Overall, our study provides insight into the cellulose decrystallization mechanism by a novel accessory protein ArCel5 that will benefit future applications.

Keywords

Accessory protein / CBM / Linker / Glycosylation / Decrystallization / Synergism

Cite this article

Download citation ▾
Yue Yuan, Chunshu Chen, Xueyan Wang, Shaonian Shen, Xiaoyu Guo, Xiaoyi Chen, Fan Yang, Xianzhen Li. A novel accessory protein ArCel5 from cellulose-gelatinizing fungus Arthrobotrys sp. CX1. Bioresources and Bioprocessing, 2022, 9(1): 27 DOI:10.1186/s40643-022-00519-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amore A, Knott BC, Supekar NT, Shajahan A, Azadi P, Zhao P, Wells L, Linger JG, Hobdey SE, Vander Wall TA. Distinct roles of N- and O-glycans in cellulase activity and stability. Proc Natl Acad Sci USA, 2017, 114(52): 13667-13672.

[2]

Arantes V, Saddler JN. Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels, 2010, 3(1): 1-11.

[3]

Arola S, Linder MB. Binding of cellulose binding modules reveal differences between cellulose substrates. Sci Rep, 2016, 6: 1-9.

[4]

Badino SF, Bathke JK, Sørensen TH, Windahl MS, Jensen K, Peters GHJ, Borch K, Westh P. The influence of different linker modifications on the catalytic activity and cellulose affinity of cellobiohydrolase Cel7A from Hypocrea jecorina. Protein Eng Des Sel, 2017, 30(7): 459-501.

[5]

Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, Decker SR, Bu L, Zhao X, McCabe C. The O-Glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible, disordered protein. Biophys J, 2010, 99(11): 3773-3781.

[6]

Beckham GT, Dai Z, Matthews JF, Momany M, Payne CM, Adney WS, Baker SE, Himmel ME. Harnessing glycosylation to improve cellulase activity. Curr Opin Biotechnol, 2012, 23(3): 338-345.

[7]

Cheng G, Varanasi P, Varanasi P, Liu H, MelnichenkoYB SBA, Kent MS, Singh S. Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromol, 2011, 12(4): 933-941.

[8]

Christensen SJ, Badino SF, Cavaleiro AM, Borch K, Westh P. Functional analysis of chimeric TrCel6A enzymes with different carbohydrate binding modules. Protein Eng Des Sel, 2020, 32(9): 401-409.

[9]

Chundawat S, Beckham GT, Himmel ME, Dale BE. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng, 2011, 2: 121-145.

[10]

Crowe J, Dbeli H, Gentz R, Hochuli E, Stber D, Henco K. 6xHis-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol Biol, 1994, 31: 371-387.

[11]

Delsaute M, Berlemont R, Dehareng D, Van Elder D, Galleni M, Bauvois C. Three-dimensional structure of RBcel1, a metagenome-derived psychrotolerant family GH5 endoglucanase. Acta Crystallogr A, 2013, 69(8): 828-833.

[12]

Effenberger I, Harport M, Pfannstiel J, Klaiber I, Schaller A. Expression in Pichia pastoris and characterization of two novel dirigent proteins for atropselective formation of gossypol. Appl Microbiol Biotechnol, 2017, 101(5): 2021-2032.

[13]

Eibinger M, Sigl K, Sattelkow J, Ganner T, Ramoni J, Seiboth B, Plank H, Nidetzky B. Functional characterization of the native swollenin from Trichoderma reesei : study of its possible role as C1 factor of enzymatic lignocellulose conversion. Biotechnol Biofuels, 2016, 9(1): 1-19.

[14]

Gilbert HJ, Knox JP, Boraston AB. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol, 2013, 23(5): 669-677.

[15]

Guo J, Catchmark JM. Binding specificity and thermodynamics of cellulose-binding modules from Trichoderma reesei Cel7A and Cel6A. Biomacromol, 2013, 14(5): 1268-1277.

[16]

Gupta R, Baldock SJ, Fielden PR, Grieve BD. Capillary zone electrophoresis for the analysis of glycoforms of cellobiohydrolase. J Chromatogr A, 2011, 1218(31): 5362-5368.

[17]

Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS. Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. Fed Eur Biochem Soc Lett, 2010, 277(6): 1571-1582.

[18]

Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS. Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Biores Technol, 2011, 102(3): 2910-2915.

[19]

Haque MA, Cho KM, Barman DN, Kim MK, Yun HD. A potential cellulose microfibril swelling enzyme isolated from Bacillus sp. AY8 enhances cellulose hydrolysis. Process Biochem, 2015, 50(5): 807-815.

[20]

Hashimoto H. Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci Cmls, 2006, 63(24): 2954-2967.

[21]

Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels, 2012, 5(1): 45-47.

[22]

Hu J, Arantes V, Pribowo A, Saddler JN. The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels, 2013, 6(1): 1-12.

[23]

Jäger G, Girfoglio M, Dollo F, Rinaldi R, Bongard H, Commandeur U, Fischer R, Spiess AC, Büchs J. How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnol Biofuels, 2011, 5(1): 1-16.

[24]

Johns MA, Bernardes A, Azevêdo ERD, Guimares FEG, Lowe JP, Gale EM, Polikarpov I, Scott JL, Sharma RI. On the subtle tuneability of cellulose hydrogels: implications for binding of biomolecules demonstrated for CBM 1. J Mater Chem B, 2017, 5(21): 879-3887.

[25]

Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry, 1989, 28(18): 7241-7257.

[26]

Kumar R, Wyman CE. Does change in accessibility with conversion depend on both the substrate and pretreatment technology?. Biores Technol, 2009, 99(18): 4193-4202.

[27]

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680-685.

[28]

Lan W, Zhang H, Chen X, Yang F, Li X. Gelatinization and decrystallization of cellulose by newly isolated Arthrobotrys sp. CX1 to facilitate cellulose degradability. Cellulose, 2016, 23(6): 3543-3554.

[29]

Leggio LL, Larsen S. The 1.62 Å structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. Fed Eur Biochem Soc Lett, 2002, 523(1–3): 103-108.

[30]

Linder M, Lindeberg G, Reinikainen T, Teeri TT, Pettersson G. The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution. Fed Eur Biochem Soc Lett, 1995, 372(1): 96-98.

[31]

Mansfield SD, Mooney C, Saddler JN. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog, 2010, 15(5): 804-816.

[32]

Mccartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP. Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Anal Biochem, 2004, 326(1): 49-54.

[33]

McLean BW, Boraston AB, Brouwer D, Sanaie N, Fyfe CA, Warren RAJ, Kilburn DG, Haynes CA. Carbohydrate-binding modules recognize fine substructures of cellulose. J Biol Chem, 2002, 277(52): 50245-50254.

[34]

Miller BW. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31: 426-428.

[35]

Nakamura A, Tasaki T, Ishiwata D, Yamamoto M, Okuni Y, Visootsat A, Maximilien M, Noji H, Uchiyama T, Samejima M. Single-molecule imaging analysis of binding, processive movement, and dissociation of cellobiohydrolase Trichoderma reesei Cel6A and its domains on crystalline cellulose. J Biol Chem, 2016, 291(43): 22404-22413.

[36]

Nidetzky B, Steiner W, Claeyssens M. Cellulose hydrolysis by the cellulases from Trichoderma reesei: adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis. Biochem J, 1994, 303(3): 817-823.

[37]

Nikolaos G, Nikolas N, Cosgrove DJ. Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol, 2015, 99(9): 3807-3823.

[38]

Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels, 2010, 3(1): 1-10.

[39]

Patrice G, Xavier R, Emmanuel C. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res, 2003, 31(13): 3320-3323.

[40]

Payne CM, Resch MG, Chen L, Crowley MF, Himmel ME, Taylor LE, Sandgren M, Ståhlberg J, Stals I, Tan Z, Ståhlberg J. Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose. Proc Natl Acad Sci USA, 2013, 110(36): 14646-14651.

[41]

Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal cellulases. Chem Rev, 2015, 115(3): 1308-1448.

[42]

Petersen TN, Brunak S, Von HG, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 2011, 8(10): 785-786.

[43]

Poletto M, Zattera AJ, Santana RMC. Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci, 2012, 126(S1): E337-E344.

[44]

Popescu MC, Popescu CM, Lisa G, Sakata Y. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct, 2011, 988(1–3): 65-72.

[45]

Prajapati AS, Panchal KJ, Pawar VA, Noronha MJ, Patel DH, Subramanian RB. Review on cellulase and xylanase engineering for biofuel production. Ind Biotechnol, 2018, 14(1): 38-44.

[46]

Qin YM, Tao H, Liu YY, Wang YD, Zhang JR, Tang AX. A novel non-hydrolytic protein from Pseudomonas oryzihabitans enhances the enzymatic hydrolysis of cellulose. J Biotechnol, 2013, 168(1): 24-31.

[47]

Receveur V, Czjzek M, Schulein M, Panine P, Henrissat B. Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. J Biol Chem, 2002, 277(43): 40887-40892.

[48]

Reese ET, Siu RGH, Levinson HS. Biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol, 1950, 59(4): 485-497.

[49]

Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YHP. Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng, 2011, 108(1): 22-30.

[50]

Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem, 2002, 269(17): 4202-4211.

[51]

Sammond DW, Payne CM, Roman B, Himmel ME, Crowley MF, Beckham GT. Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS ONE, 2012, 7(11): 1-14.

[52]

Sdrobi A, Cazacu G, Totolin M, Vasile C. Alkaline solution swelling of fatty acids-modified softwood Kraft pulp fibers under cold plasma conditions. Cellul Chem Technol, 2011, 45(5–6): 329-338.

[53]

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, Mcwilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol, 2011, 7(1): 1-6.

[54]

Song B, Li B, Wang X, Shen W, Park S, Collings C, Feng A, Smith SJ, Walton JD, Ding SY. Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility. Biotechnol Biofuels, 2018, 11(1): 1-11.

[55]

Ståhlberg J, Johansson G, Pettersson G. A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol, 1991, 9(3): 286-290.

[56]

Sun Z, Liu H, Wang X, Yang F, Li X. Proteomic analysis of the xanthan-degrading pathway of Microbacterium sp. XT11. ACS Omega, 2019, 4(21): 19096-19105.

[57]

Tomme P, Boraston A, Mclean B, Kormos J, Creagh AL, Sturch K, Gilkes NR, Haynes CA, Warren RAJ, Kilburn DG. Characterization and affinity applications of cellulose-binding domains. J Chromatogr B Biomed Sci Appl, 1998, 715(1): 283-296.

[58]

Tsuchida JE, Rezende CA, Oliveira-Silva R, Lima MA, d’Eurydice MN, Polikarpov I, Bonagamba TJ. Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnol Biofuels, 2014, 7(1): 1-13.

[59]

Yan J, Liu W, Li Y, Lai H, Zheng Y, Huang J, Chen C, Chen Y, Jin J, Li H. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase. Biochem Biophys Res Commun, 2016, 475(1): 8-12.

[60]

Zhang YHP, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol Bioeng, 2004, 88(7): 797-824.

Funding

National Natural Science Foundation of China(32072160)

Natural Science Foundation of Liaoning Province(J2020041)

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/