Biotechnological advances for improving natural pigment production: a state-of-the-art review

Xiaomei Lyu , Yan Lyu , Hongwei Yu , WeiNing Chen , Lidan Ye , Ruijin Yang

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 8

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 8 DOI: 10.1186/s40643-022-00497-4
Review

Biotechnological advances for improving natural pigment production: a state-of-the-art review

Author information +
History +
PDF

Abstract

In current years, natural pigments are facing a fast-growing global market due to the increase of people’s awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.

Keywords

Natural pigments / Plant cell/tissue culture / Microbial cultivation / Heterologous biosynthesis / Metabolic engineering

Cite this article

Download citation ▾
Xiaomei Lyu, Yan Lyu, Hongwei Yu, WeiNing Chen, Lidan Ye, Ruijin Yang. Biotechnological advances for improving natural pigment production: a state-of-the-art review. Bioresources and Bioprocessing, 2022, 9(1): 8 DOI:10.1186/s40643-022-00497-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguiar TQ, Dinis C, Domingues L. Cre-loxP-based system for removal and reuse of selection markers in Ashbya gossypii targeted engineering (vol 68, pg 1, 2014). Fungal Genet Biol, 2014, 70: 11-11.

[2]

Ahmadkelayeh S, Hawboldt K. Extraction of lipids and astaxanthin from crustacean by-products: a review on supercritical CO2 extraction. Trends Food Sci Technol, 2020, 103: 94-108.

[3]

Akbar Hussain E, Sadiq Z, Zia-Ul-Haq M. Betalains: biomolecular aspects, 2018, Cham: Springer.

[4]

Akdemir H, Silva A, Zha J, Zagorevski DV, Koffas MAG. Production of pyranoanthocyanins using Escherichia coli co-cultures. Metab Eng, 2019, 55: 290-298.

[5]

Alipour S, Habibi A, Taavoni S, Varmira K. Beta-carotene production from soap stock by loofa-immobilized Rhodotorula rubra in an airlift photobioreactor. Process Biochem, 2017, 54: 9-19.

[6]

Allen CM, Alworth W, Macrae A, Bloch K. A long chain terpenyl pyrophosphate synthetase from Micrococcus Lysodeikticus. J Bio Chem, 1967, 242(8): 1895-2000.

[7]

Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—a review. J Tradit Complement Med, 2017, 7(2): 205-233.

[8]

Astorg P. Food carotenoids and cancer prevention—an overview of current research. Trends Food Sci Technol, 1997, 8: 406-413.

[9]

Bahabadi S, Sharifi M, Murata J, Satake H. The effect of chitosan and chitin oligomers on gene expression and lignans production in Linum album cell cultures. J Med Plants, 2014, 13: 46-53.

[10]

Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol, 2013, 97(14): 6337-6345.

[11]

Bampidis V, Azimonti G, Bastos MD, Christensen H, Dusemund B, Kouba M, Durjava MK, Lopez-Alonso M, Puente SL, Marcon F, Mayo B, Pechova A, Petkova M, Sanz Y, Villa RE, Woutersen R, Costa L, Cubadda F, Dierick N, Flachowsky G, Glandorf B, Herman L, Mantovani A, Saarela M, Wallace RJ, Anguita M, Tarres-Call J, Ramos F Us EPAPS. Safety and efficacy of L-leucine produced by fermentation with Escherichia coli NITE BP-02351 for all animal species. Efsa J, 2019

[12]

Bampidis V, Azimonti G, Bastos MD, Christensen H, Dusemund B, Kouba M, Durjava MK, Lopez-Alonso M, Puente SL, Marcon F, Mayo B, Pechova A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Glandorf B, Herman L, Maradona MP, Saarela M, Anguita M, Brozzi R, Galobart J, Gregoretti L, Innocenti M, Lopez-Galvez G, Sofianidis K, Pettenati E, Vettori MV Us EPAPS. Safety and efficacy of L-cysteine hydrochloride monohydrate produced by fermentation using Escherichia coli KCCM 80180 and Escherichia coli KCCM 80181 as a flavouring additive for all animal species. Efsa J, 2020

[13]

Bampidis V, Azimonti G, Bastos MD, Christensen H, Dusemund B, Kouba M, Lopez-Alonso M, Puente SL, Marcon F, Mayo B, Pechova A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Herman L, Anguita M, Galobart J, Pettenati E, Tarres-Call J Us EPAPS. Safety and efficacy of a feed additive consisting of l-histidine monohydrochloride monohydrate produced using Escherichia coli NITE SD 00268 for all animal species (Kyowa Hakko Europe GmbH). Efsa J, 2021

[14]

Beata M-K, Solymosi K. Chlorophylls and their derivatives used in food industry and medicine. Mini Rev Med Chem, 2016

[15]

Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M. Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr, 2016, 56(13): 2209-2222.

[16]

Benstein RM, Cebi Z, Podola B, Melkonian M. Immobilized growth of the peridinin-producing marine dinoflagellate Symbiodinium in a simple biofilm photobioreactor. Mar Biotechnol, 2014, 16(6): 621-628.

[17]

Bhojwani SS, Dantu PK. Production of industrial phytochemicals plant tissue culture: an introductory text, 2013, Delhi: Springer, 275-286.

[18]

Biswas M, Das SS, Dey S. Establishment of a stable Amaranthus tricolor callus line for production of food colorant. Food Sci Biotechnol, 2013, 22(1): 1-8.

[19]

Bitok JK, Lemetre C, Ternei MA, Brady SF. Identification of biosynthetic gene clusters from metagenomic libraries using PPTase complementation in a Streptomyces host. Fems Microbio Lett, 2017

[20]

Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol, 2008, 26(11): 1301-1308.

[21]

Cardoso-Ugarte GA, Sosa-Morales ME, Ballard T, Liceaga A, Martin-Gonzalez MFS. Microwave-assisted extraction of betalains from red beet (Betavulgaris). Lwt Food Sci Technol, 2014, 59(1): 276-282.

[22]

Carlos Mata-Gomez L, Cesar Montanez J, Mendez-Zavala A, Noe Aguilar C. Biotechnological production of carotenoids by yeasts: an overview. Micro Cell Fact, 2014

[23]

Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, Maciag A, Puca AA, Vecchione C. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol, 2013, 61: 215-226.

[24]

Chandler DR. Mauve: how one man invented a color that changed the world. Relig Humanism, 2001, 35(3–4): 77-78.

[25]

Chang J-J, Thia C, Lin H-Y, Liu H-L, Ho F-J, Wu J-T, Shih M-C, Li W-H, Huang C-C. Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresour Technol, 2015, 184: 2-8.

[26]

Chang-he D, Meng Y, Hong-li L. Study on the optimization of beta-carotene production by fermentation of Blakeslea trispora. Food Res Dev, 2020, 41(16): 188-194.

[27]

Chao F, Hao H, Yan L, Wen-zhong W. Critical control points of industrial carotenoid production by Blakeslea trispora. Food Ferment Ind, 2018, 5: 284-290.

[28]

Chauhan AK, Maheshwari DK, Dheeman S, Bajpai VK. Termitarium-inhabiting Bacillus spp. enhanced plant growth and bioactive component in turmeric Curcumalonga L.). Curr Microbiol, 2017, 74(2): 184-192.

[29]

Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol, 2012, 110: 510-516.

[30]

Chen H, Zhong Q. Thermal and UV stability of beta-carotene dissolved in peppermint oil microemulsified by sunflower lecithin and Tween 20 blend. Food Chem, 2015, 174: 630-636.

[31]

Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS ONE, 2017, 12(9

[32]

Chen W, Chen R, Liu Q, He Y, He K, Ding X, Kang L, Guo X, Xie N, Zhou Y, Lu Y, Cox RJ, Molnar I, Li M, Shao Y, Chen F. Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem Sci, 2017, 8(7): 4917-4925.

[33]

Chirumbolo S. Dietary assumption of plant polyphenols and prevention of allergy. Curr Pharm Des, 2014, 20(6): 811-839.

[34]

Chou Y-L, Ko C-Y, Yen C-C, Chen L-FO, Shaw J-F. Multiple promoters driving the expression of astaxanthin biosynthesis genes can enhance free-form astaxanthin production. J Microbiol Methods, 2019, 160: 20-28.

[35]

Ciriminna R, Fidalgo A, Danzi C, Timpanaro G, Ilharco LM, Pagliaro M. Betanin: a bioeconomy insight into a valued betacyanin. Acs Sustain Chem Eng, 2018, 6(3): 2860-2865.

[36]

Cobbs C, Heath J, Stireman JO, Abbot P. Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals. Mol Phylogenet Evol, 2013, 68(2): 221-228.

[37]

Couto MR, Rodrigue JL, Rodrigues LR. Optimization of fermentation conditions for the production of curcumin by engineered Escherichia coli. J R Soc Interface, 2017

[38]

Dawande R (2018) Carotenoids market by product (astaxanthin, capsanthin, lutein, beta-carotene, lycopene, and others), source (natural and synthetic), and application (animal feed, human food, dietary supplement, and others) - global opportunity analysis and industry forecast, 2018–2025. Nutraceutical/Wellness food:266

[39]

de Castro RJS, Sato HH. Enzyme production by solid state fermentation: general aspects and an analysis of the physicochemical characteristics of substrates for agro-industrial wastes valorization. Waste Biomass Valorization, 2015, 6(6): 1085-1093.

[40]

Dinh CV, Prather KLJ. Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli. Proc Natl Acad Sci USA, 2019, 116(51): 25562-25568.

[41]

Dong YH, Feldberg L, Rogachev I, Aharoni A. Characterization of the production of anthocyanin pigment 1 Arabidopsis dominant mutant using dlemma dual isotope labeling approach. Phytochemistry, 2021

[42]

Dudnik A, Gaspar P, Neves AR, Forster J. Engineering of microbial cell factories for the production of plant polyphenols with health-beneficial properties. Curr Pharm Des, 2018, 24(19): 2208-2225.

[43]

Eichenberger M, Hansson A, Fischer D, Durr L, Naesby M. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Res, 2018

[44]

El-Batal AI, El-Sayyad GS, El-Ghamery A, Gobara M. Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J Cluster Sci, 2017, 28(3): 1083-1112.

[45]

Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE, 2009

[46]

Esatbeyoglu T, Wagner AE, Schini-Kerth VB, Rimbach G. Betanin-A food colorant with biological activity. Mol Nutr Food Res, 2015, 59(1): 36-47.

[47]

Escribano J, Cabanes J, Jiménez-Atiénzar M, Ibañez-Tremolada M, Gómez-Pando LR, García-Carmona F, Gandía-Herrero F. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodiumquinoa) varieties. Food Chem, 2017, 234: 285-294.

[48]

Fangyu D, Feng L, Wenming S, Jianlin C, Bin W, Bingfang H. Efficient synthesis of crocins from crocetin by a microbial glycosyltransferase from Bacillus subtilis 168. J Agric Food Chem, 2018, 66(44): 11701-11708.

[49]

Fathi Z, Tramontin LRR, Ebrahimipour G, Borodina I, Darvishi F. Metabolic engineering of Saccharomyces cerevisiae for production of beta-carotene from hydrophobic substrates. FEMS Yeast Res, 2021

[50]

Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S, Giuliano G. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci USA, 2014, 111(33): 12246-12251.

[51]

Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, Plaza A, Xia L, Mueller R, Stewart AF, Zhang Y. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol, 2012, 30(5): 440.

[52]

Ganapathy A, Jayavel S, Natesan S. Draft genome sequence of carotenoid producing yellow pigmented Planococcus maritimus MKU009. J Genomics, 2016, 4: 23-25.

[53]

Gandia-Herrero F, Garcia-Carmona F. Characterization of recombinant Betavulgaris 4,5-DOPA-extradiol-dioxygenase active in the biosynthesis of betalains. Planta, 2012, 236(1): 91-100.

[54]

Gandia-Herrero F, Garcia-Carmona F. Biosynthesis of betalains: yellow and violet plant pigments. Trends Plant Sci, 2013, 18(6): 334-343.

[55]

Ganesan V, Li Z, Wang X, Zhang H. Heterologous biosynthesis of natural product naringenin by co-culture engineering. Syn Syst Biotechno, 2017, 2(3): 236-242.

[56]

Gao S, Tong Y, Zhu L, Ge M, Zhang Y, Chen D, Jiang Y, Yang S. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous beta-carotene production. Metab Eng, 2017, 41: 192-201.

[57]

Georgiev V, Ilieva M, Bley T, Pavlov A. Betalain production in plant in vitro systems. Acta Physiol Plant, 2008, 30(5): 581-593.

[58]

Georgiev V, Slavov A, Vasileva I, Pavlov A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng Life Sci, 2018, 18(11): 779-798.

[59]

Gerhard GS. Heme as a taste molecule. Curr Diab Rep, 2020

[60]

Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature, 2012, 492(7427): 138-142.

[61]

Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA III, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009, 6(5): 343-U41.

[62]

Gong Z, Wang H, Tang J, Bi C, Li Q, Zhang X. Coordinated expression of astaxanthin biosynthesis genes for improved astaxanthin production in Escherichia coli. J Agr Food Chem, 2020, 68(50): 14917-14927.

[63]

Grewal PS, Modavi C, Russ ZN, Harris NC, Dueber JE. Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metab Eng, 2018, 45: 180-188.

[64]

Harris NN, Javellana J, Davies KM, Lewis DH, Jameson PE, Deroles SC, Calcott KE, Gould KS, Schwinn KE. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biol, 2012

[65]

Hatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, McGrath JM, Lloyd AM. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet, 2012, 44(7): 816-U130.

[66]

Heider SAE, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechol, 2014, 98(10): 4355-4368.

[67]

Henke NA, Wendisch VF. Improved astaxanthin production with corynebacterium glutamicum by application of a membrane fusion protein. Mar Drugs, 2019

[68]

Henke N, Heider S, Peters-Wendisch P, Wendisch V. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Mar Drugs, 2016

[69]

Hong J, Im DK, Oh MK. Investigating E. coli coculture for resveratrol production with c-13 metabolic flux analysis. J Agr Food Chem, 2020, 68(11): 3466-3473.

[70]

Hoppe M, Brun B, Larsson MP, Moraeus L, Hulthen L. Heme iron-based dietary intervention for improvement of iron status in young women. Nutrition, 2013, 29(1): 89-95.

[71]

Horwitz AA, Walter JM, Schubert MG, Kung SH, Hawkins K, Platt DM, Hernday AD, Mahatdejkul-Meadows T, Szeto W, Chandran SS, Newman JD. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst, 2015, 1(1): 88-96.

[72]

Hou S, Qin Q, Dai J. Wicket: a versatile tool for the integration and optimization of exogenous pathways in Saccharomyces cerevisiae. Acs Synth Biol, 2018, 7(3): 782-788.

[73]

Hu X, Ma X, Tang P, Yuan Q. Improved beta-carotene production by oxidative stress in Blakeslea trispora induced by liquid paraffin. Biotechnol Lett, 2013, 35(4): 559-63.

[74]

Hu JJ, Nagarajan D, Zhang QG, Chang JS, Lee DJ. Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol Adv, 2018, 36(1): 54-67.

[75]

Imtiyaj Khan M, Giridhar P. Plant betalains: chemistry and biochemistry. Phytochemistry, 2015, 117: 267-295.

[76]

Itaya M, Fujita K, Kuroki A, Tsuge K. Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods, 2008, 5(1): 41-43.

[77]

Jakociunas T, Rajkumar AS, Zhang J, Arsovska D, Rodriguez A, Jendresen CB, Skjodt ML, Nielsen AT, Borodina I, Jensen MK, Keasling JD. CasEMBLR: cas9-facilitated multiloci genomic integration of in vivo assembled dna parts in Saccharomyces cerevisiae. Acs Synth Biol, 2015, 4(11): 1226-1234.

[78]

Jeong TH, Cho YS, Choi S-S, Kim G-D, Lim HK. Enhanced production of astaxanthin by metabolically engineered non-mevalonate pathway in Escherichia coli. Korean J Microbiol Biotechnol, 2018, 46(2): 114-119.

[79]

Jiang G, Yang Z, Wang Y, Yao M, Chen Y, Xiao W, Yuan Y. Enhanced astaxanthin production in yeast via combined mutagenesis and evolution. Biochem Eng J, 2020

[80]

Jin J, Wang Y, Yao M, Gu X, Li B, Liu H, Ding M, Xiao W, Yuan Y. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering. Biotechnol Biofuels, 2018, 11: 230.

[81]

Jing K, He S, Chen T, Lu Y, Ng IS. Enhancing beta-carotene biosynthesis and gene transcriptional regulation in Blakeslea trispora with sodium acetate. Biochem Eng J, 2016, 114: 10-17.

[82]

Jones CG, Keeling CI, Ghisalberti EL, Barbour EL, Plummer JA, Bohlmann J. Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, SantalumAlbum L. Arch. Biochem Biophys, 2008, 477(1): 121-30.

[83]

Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim MHA, Lachance DM, Hahn J, Koffas MAG. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng, 2016, 35: 55-63.

[84]

Jones JA, Vernacchio VR, Collins SM, Shirke AN, Xiu Y, Englaender JA, Cress BF, McCutcheon CC, Linhardt RJ, Gross RA, Koffas MAG. Complete biosynthesis of anthocyanins using E. coli polycultures. Mbio, 2017

[85]

Kan E, Katsuyama Y, Maruyama J-i, Tamano K, Koyama Y, Ohnishi Y. Production of the plant polyketide curcumin in Aspergillus oryzae: strengthening malonyl-CoA supply for yield improvement. Biosci Biotech Bioch, 2019, 83(7): 1372-1381.

[86]

Kang S-Y, Heo KT, Hong Y-S. Optimization of artificial curcumin biosynthesis in E-coli by randomized 5′-UTR sequences to control the multienzyme pathway. Acs Synth Biol, 2018, 7(9): 2054-2062.

[87]

Katsuyama Y, Matsuzawa M, Funa N, Horinouch S. Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway. Microbiology, 2008, 154: 2620-2628.

[88]

Kildegaard KR, Adiego-Pérez B, Doménech Belda D, Khangura JK, Holkenbrink C, Borodina I. Engineering of Yarrowia lipolytica for production of astaxanthin. Synth Syst Biotechnol, 2017, 2(4): 287-294.

[89]

Kim D, Ku S. Beneficial effects of monascus sp kccm 10093 pigments and derivatives: a mini review. Molecules, 2018

[90]

Kiokias S, Proestos C, Varzakas T. A review of the structure, biosynthesis, absorption of carotenoids-analysis and properties of their common natural extracts. Curr Res Nutr Food Sci, 2016, 4: 25-37.

[91]

Kobayashi K, Masuda T. Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana. Front Plant Sci, 2016

[92]

Krinsky NI, Landrum JT, Bone RA. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr, 2003, 23: 171-201.

[93]

Kumar SS, Manoj P, Giridhar P, Shrivastava R, Bharadwaj M. Fruit extracts of Basella rubra that are rich in bioactives and betalains exhibit antioxidant activity and cytotoxicity against human cervical carcinoma cells. J Funct Foods, 2015, 15: 509-515.

[94]

Kuo FS, Chien YH, Chen CJ. Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresour Technol, 2012, 113: 315-8.

[95]

Kwon SJ, de Boer AL, Petri R, Schmidt-Dannert C. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl Environ Microb, 2003, 69(8): 4875-4883.

[96]

Kwon O-H, Kim S, Hahm D-H, Lee SY, Kim P. Potential application of the recombinant Escherichia coli-synthesized heme as a bioavailable iron source. J Microbiol Biotechnol, 2009, 19(6): 604-609.

[97]

Lagashetti AC, Dufossé L, Singh SK, Singh PN. Fungal pigments and their prospects in different industries. Microorganisms, 2019, 7(12): 604.

[98]

Lage DdA, Tirado MdS, Vanicore SR, de Carvalho Sabino KC, Albarello N. Production of betalains from callus and cell suspension cultures of Pereskia aculeata miller, an unconventional leafy vegetable. Plant Cell Tiss Org, 2015, 122(2): 341-350.

[99]

Lan TTP, Huy ND, Luong NN, Nghi NV, Tan TH, Quan LV, Loc NH. Identification and characterization of genes in the curcuminoid pathway of Curcuma zedoaria roscoe. Curr Pharm Biotechnol, 2018, 19(10): 839-846.

[100]

Lange BM, Rujan T, Martin W, Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA, 2000, 97(24): 13172-13177.

[101]

Larroude M, Celinska E, Back A, Thomas S, Nicaud JM, Ledesma-Amaro R. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of beta-carotene. Biotechnol Bioeng, 2018, 115(2): 464-472.

[102]

Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK, Keasling JD. BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng, 2011

[103]

Lee JM, Joung J-G, McQuinn R, Chung M-Y, Fei Z, Tieman D, Klee H, Giovannoni J. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J, 2012, 70(2): 191-204.

[104]

Lee MJ, Kim H-J, Lee J-Y, Kwon AS, Jun SY, Kang SH, Kim P. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. J Microbiol Biotechnol, 2013, 23(5): 668-673.

[105]

Lee JJL, Chen L, Cao B, Chen WN. Engineering Rhodosporidium toruloides with a membrane transporter facilitates production and separation of carotenoids and lipids in a bi-phasic culture. Appl Microbiol Biotechnol, 2016, 100(2): 869-877.

[106]

Lemuth K, Steuer K, Albermann C. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Fact, 2011, 10(1): 29.

[107]

Levisson M, Patinios C, Hein S, de Groot PA, Daran J-M, Hall RD, Martens S, Beekwilder J. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb Cell Fact, 2018

[108]

Li S, Huang JC. Assessment of expression cassettes and culture media for different Escherichia coli strains to produce astaxanthin. Nat Prod Bioprospect, 2018, 8(5): 397-403.

[109]

Li Q-l, Tian J. Safety evaluation and solutions of food synthetic pigments. Food Ind, 2017, 38: 268-271.

[110]

Li M, Schneider K, Kristensen M, Borodina I, Nielsen J. Engineering yeast for high-level production of stilbenoid antioxidants. Sci Rep, 2016

[111]

Li J, Shen J, Sun Z, Li J, Li C, Li X, Zhang Y. Discovery of several novel targets that enhance beta-carotene production in Saccharomyces cerevisiae. Front Microbiol, 2017, 8: 1116.

[112]

Liang B, Du XJ, Li P, Sun CC, Wang S. Investigation of citrinin and pigment biosynthesis mechanisms in Monascus purpureus by transcriptomic analysis. Front Microbiol, 2018, 9: 1374.

[113]

Lim CG, Wong L, Bhan N, Dvora H, Xu P, Venkiteswaran S, Koffas MAG. Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin. Appl Environ Microb, 2015, 81(18): 6276-6284.

[114]

Lin YJ, Chang JJ, Lin HY, Thia C, Kao YY, Huang CC, Li WH. Metabolic engineering a yeast to produce astaxanthin. Bioresour Technol, 2017, 245(Pt A): 899-905.

[115]

Liu J, Ren Y, Yao S. Repeated-batch cultivation of encapsulated Monascus purpureus by polyelectrolyte complex for natural pigment production. Chin J Chem Eng, 2010, 18(6): 1013-1017.

[116]

Liu P, Sun L, Sun Y, Shang F, Yan G. Decreased fluidity of cell membranes causes a metal ion deficiency in recombinant Saccharomyces cerevisiae producing carotenoids. J Ind Microbiol Biotechnol, 2016, 43(4): 525-35.

[117]

Liu Y, Yan Z, Lu X, Xiao D, Jiang H. Improving the catalytic activity of isopentenyl phosphate kinase through protein coevolution analysis. Sci Rep, 2016

[118]

Liu J, Chai X, Guo T, Wu J, Yang P, Luo Y, Zhao H, Zhao W, Nkechi O, Dong J, Bai J, Lin Q. Disruption of the ergosterol biosynthetic pathway results in increased membrane permeability, causing overproduction and secretion of extracellular monascus pigments in submerged fermentation. J Agric Food Chem, 2019

[119]

Liu S, Daigger GT, Kang J, Zhang G. Effects of light intensity and photoperiod on pigments production and corresponding key gene expression of Rhodopseudomonas palustris in a photobioreactor system. Bioresour Technol, 2019, 294

[120]

Liu T, Dong C, Qi M, Zhang B, Huang L, Xu Z, Lian J. Construction of a stable and temperature-responsive yeast cell factory for crocetin biosynthesis using CRISPR-Cas9. Front Bioeng Biotech, 2020, 8: 653.

[121]

Liu J, Wu J, Cai X, Zhang S, Liang Y, Lin Q. Regulation of secondary metabolite biosynthesis in Monascus purpureus via cofactor metabolic engineering strategies. Food Microbiol, 2021, 95

[122]

Liu L, Qu YL, Dong GR, Wang J, Hu CY, Meng YH. Elevated β-carotene production using codon-adapted CarrA&B and metabolic balance in engineered Yarrowia lipolytica. Front Microbiol, 2021

[123]

Lu Q, Liu JZ. Enhanced astaxanthin production in Escherichia coli via morphology and oxidative stress engineering. J Agric Food Chem, 2019, 67(42): 11703-11709.

[124]

Lu Q, Bu Y-F, Liu J-Z. Metabolic engineering of Escherichia coli for producing astaxanthin as the predominant carotenoid. Mar Drugs, 2017

[125]

Lu SW, Zhang Y, Zhu K, Yang W, Jl Ye, Chai L, Xu Q, Deng X. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiol, 2018, 176(4): 2657-2676.

[126]

Luo JR, Duan JJ, Huo D, Shi QQ, Niu LX, Zhang YL. Transcriptomic analysis reveals transcription factors related to leaf anthocyanin biosynthesis in Paeonia qiui. Molecules, 2017

[127]

Luo W, Wang Y, Yang P, Qu Y, Yu X. Multilevel regulation of carotenoid synthesis by light and active oxygen in Blakeslea trispora. J Agr Food Chem, 2021, 69(37): 10974-10988.

[128]

Lv X, Xu H, Yu H. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl Microbiol Biotechnol, 2013, 97(6): 2357-2365.

[129]

Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol, 2014, 186: 128-136.

[130]

Lv X, Gu J, Wang F, Xie W, Liu M, Ye L, Yu H. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering. Biotechnol Bioeng, 2016, 113(12): 2661-2669.

[131]

Lyu XM, Lee J, Chen WN. Potential natural food preservatives and their sustainable production in yeast: terpenoids and polyphenols. J Agr Food Chem, 2019, 67(16): 4397-4417.

[132]

Lyu XM, Zhao GL, Ng KR, Mark R, Chen WN. Metabolic engineering of Saccharomyces cerevisiae for de novo production of kaempferol. J Agr Food Chem, 2019, 67(19): 5596-5606.

[133]

Ma T, Zhou Y, Li X, Zhu F, Cheng Y, Liu Y, Deng Z, Liu T. Genome mining of astaxanthin biosynthetic genes from Sphingomonassp. ATCC 55669 for heterologous overproduction in Escherichiacoli. Biotechnol J, 2016, 11(2): 228-237.

[134]

Markets Ma (2017) Lutein market by form (powder and crystalline, oil suspension, beadlet, emulsion), source (natural, synthetic), application (food, beverages, dietary supplements, animal feed), production process, and region—global forecast to 2022. markets and markets

[135]

Malik S, Bhushan S, Sharma M, Ahuja PS. Biotechnological approaches to the production of shikonins: a critical review with recent updates. Crit Rev Biotechnol, 2016, 36(2): 327-40.

[136]

Manivasagan P, Bharathiraja S, Santha Moorthy M, Mondal S, Seo H, Dae Lee K, Oh J. Marine natural pigments as potential sources for therapeutic applications. Crit Rev Biotechnol, 2018, 38(5): 745-761.

[137]

Mannazzu I, Landolfo S, da Silva TL, Buzzini P. Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microb Biot, 2015, 31(11): 1665-1673.

[138]

McCarty NS, Graham AE, Studena L, Ledesma-Amaro R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun, 2020, 11(1): 1281-1281.

[139]

Medema MH, Osbourn A. Computational genomic identification and functional reconstitution of plant natural product biosynthetic pathways. Nat Prod Rep, 2016, 33(8): 951-62.

[140]

Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N. Production of the carotenoid lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol, 1998, 64(4): 1226-1229.

[141]

Morales-Oyervides L, Ruiz-Sanchez JP, Oliveira JC, Sousa-Gallagher MJ, Mendez-Zavala A, Giuffrida D, Dufosse L, Montanez J. Biotechnological approaches for the production of natural colorants by talaromyces/penicillium: a review. Biotechnol Adv, 2020

[142]

Moran NA, Jarvik T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science, 2010, 328(5978): 624-627.

[143]

Mota GCP, Moraes LBSd, Oliveira CYB, Oliveira DWS, Abreu JLd, Dantas DMM, Gálvez AO. Astaxanthin from Haematococcus pluvialis: processes, applications, and market. Prep Biochem Biotechnol, 2021

[144]

Murthy HN, Lee EJ, Paek KY. Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ, 2014, 118(1): 1-16.

[145]

Mussagy CU, Winterburn J, Santos-Ebinuma VC, Brandao Pereira JF. Production and extraction of carotenoids produced by microorganisms. Appl Microbiol Biot, 2019, 103(3): 1095-1114.

[146]

Mussagy CU, Winterburn J, Santos-Ebinuma VC, Pereira JFB. Production and extraction of carotenoids produced by microorganisms. Appl Microbiol Biot, 2019, 103(3): 1095-1114.

[147]

Mussagy CU, Pereira JFB, Dufosse L, Raghavan V, Santos-Ebinuma VC, Pessoa A. Advances and trends in biotechnological production of natural astaxanthin by Phaffia rhodozyma yeast. Crit Rev Food Sci Nutr, 2021

[148]

Naegeli H, Birch AN, Casacuberta J, De Schrijver A, Gralak MA, Guerche P, Jones H, Manachini B, Messean A, Nielsen EE, Nogue F, Robaglia C, Rostoks N, Sweet J, Tebbe C, Visioli F, Wal J-M, Devos Y, Dumont AF, Lanzoni A, Paoletti C, Paraskevopoulos K, Waigmann E, Modified EPG. Guidance for the risk assessment of the presence at low level of genetically modified plant material in imported food and feed under regulation (EC) No 1829/2003. Efsa J, 2017

[149]

Naing AH, Kim CK. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. Plant Mol Biol, 2018, 98(1–2): 1-18.

[150]

Nam HK, Choi JG, Lee JH, Kim SW, Oh DK. Increase in the production of beta-carotene in recombinant Escherichia coli cultured in a chemically defined medium supplemented with amino acids. Biotechnol Lett, 2013, 35(2): 265-71.

[151]

Nanou K, Roukas T, Papadakis E. Improved production of carotenes from synthetic medium by Blakeslea trispora in a bubble column reactor. Biochem Eng J, 2012, 67: 203-207.

[152]

Navab M, Dwyer KM, Hassan K, Sun P, Shircore A, Hama-Levy S, Hough G, Wang X, Drake T, Merz NB, Fogelman AM. Oxygenated carotenoid lutein and progression of early atherosclerosis: the Los Angeles atherosclerosis study. Circulation, 2001, 103: 2922-2927.

[153]

Ng CY, Farasat I, Maranas CD, Salis HM. Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration. Metab Eng, 2015, 29: 86-96.

[154]

Nogueira M, Enfissi EMA, Welsch R, Beyer P, Zurbriggen MD, Fraser PD. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: a new tool for engineering ketocarotenoids. Metab Eng, 2019, 52: 243-252.

[155]

Novakova E, Moran NA. Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus. Mol Biol Evol, 2012, 29(1): 313-323.

[156]

Olivieri G, Salatino P, Marzocchella A. Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biot, 2014, 89(2): 178-195.

[157]

Organisms EPoGM. Guidance on the risk assessment of genetically modified microorganisms and their products intended for food and feed use. EFSA J, 2011, 9(6): 2193.

[158]

Osbourn AE, O'Maille PE, Rosser SJ, Lindsey K. Synthetic biology. New Phytol, 2012, 196(3): 671-677.

[159]

Ozaydin B, Burd H, Lee TS, Keasling JD. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng, 2013, 15: 174-83.

[160]

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci, 2016, 5

[161]

Panel on Food A, Nutrient Sources added to F. Scientific opinion on the re-evaluation of anthocyanins E 163 as a food additive. EFS2, 2013

[162]

Park SY, Binkley RM, Kim WJ, Lee MH, Lee SY. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab Eng, 2018, 49: 105-115.

[163]

Pistelli L, Bertoli A, Gelli F, Bedini L, Ruffoni B, Pistelli L. Production of curcuminoids in different in vitro organs of Curcuma longa. Nat Prod Commun, 2012, 7(8): 1037-1042.

[164]

Polturak G, Breitel D, Grossman N, Sarrion-Perdigones A, Weithorn E, Pliner M, Orzaez D, Granell A, Rogachev I, Aharoni A. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytol, 2016, 210(1): 269-283.

[165]

Polturak G, Grossman N, Vela-Corcia D, Dong Y, Nudel A, Pliner M, Levy M, Rogachev I, Aharoni A. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proc Natl Acad Sci USA, 2017, 114(34): 9062-9067.

[166]

Qi D-D, Jin J, Liu D, Jia B, Yuan Y-J. In vitro and in vivo recombination of heterologous modules for improving biosynthesis of astaxanthin in yeast. Microb Cell Fact, 2020, 19(1): 103.

[167]

Qiang S, Wang J, Xiong XC, Qu YL, Liu L, Hu CY, Meng YH. Promoting the synthesis of precursor substances by overexpressing hexokinase (Hxk) and hydroxymethylglutaryl-coa synthase (Erg13) to elevate β-carotene production in engineered Yarrowia Lipolytica. Front Microbiol, 2020

[168]

Qu JL, Cao S, Wei QX, Zhang HW, Wang R, Kang W, Ma T, Zhang L, Liu TG, Au SWN, Sun F, Xia J. Synthetic multienzyme complexes, catalytic nanomachineries for cascade biosynthesis in vivo. ACS Nano, 2019, 13(9): 9895-9906.

[169]

Quan J, Tian J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE, 2009

[170]

Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol, 2006, 72(11): 1439-52.

[171]

Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusido RM, Palazon J. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 2016

[172]

Ramos KR, Valdehuesa KN, Liu H, Nisola GM, Lee WK, Chung WJ. Combining De Ley-Doudoroff and methylerythritol phosphate pathways for enhanced isoprene biosynthesis from D-galactose. Bioprocess Biosyst Eng, 2014, 37(12): 2505-13.

[173]

Rapp G. Pigments and colorants archaeomineralogy, 2009, Berlin: Springer, 201-221.

[174]

Rizzello F, De Paolis A, Durante M, Blando F, Mita G, Caretto S. Enhanced production of bioactive isoprenoid compounds from cell suspension cultures of Artemisiaannua L. using beta-cyclodextrins. Int J Mol Sci, 2014, 15(10): 19092-105.

[175]

Rodrigues JL, Araujo RG, Prather KLJ, Kluskens LD, Rodrigues LR. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Biotechnol J, 2015, 10(4): 599-U315.

[176]

Rodrigues JL, Couto MR, Araujo RG, Prather KLJ, Kluskens L, Rodrigues LR. Hydroxycinnamic acids and curcumin production in engineered Escherichia coli using heat shock promoters. Biochem Eng J, 2017, 125: 41-49.

[177]

Rodrigues JL, Gomes D, Rodrigues LR. A combinatorial approach to optimize the production of curcuminoids from tyrosine in Escherichia coli. Front Bioeng Biotech, 2020

[178]

Rodriguez A, Kildegaard KR, Li MJ, Borodina I, Nielsen J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng, 2015, 31: 181-188.

[179]

Rodriguez-Amaya DB. Natural food pigments and colorants. Curr Opin Food Sci, 2016, 7: 20-26.

[180]

Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Melendez-Martinez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu CF. A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res, 2018, 70: 62-93.

[181]

Rohdich F, Hecht S, Bacher A, Eisenreich W. Deoxyxylulose phosphate pathway of isoprenoid biosynthesis. Discovery and function of ispDEFGH genes and their cognate enzymes. Pure Appl Chem, 2003, 75(2–3): 393-405.

[182]

Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. Isoprenoid biosynthesis in bacteria—a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J, 1993, 295: 517-524.

[183]

Saini RK, Keum YS. Microbial platforms to produce commercially vital carotenoids at industrial scale: an updated review of critical issues. J Ind Microbiol Biot, 2019, 46(5): 657-674.

[184]

Saini DK, Chakdar H, Pabbi S, Shukla P. Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit Rev Food Sci, 2020, 60(3): 391-405.

[185]

Sathiyabama M, Bernstein N, Anusuya S. Chitosan elicitation for increased curcumin production and stimulation of defence response in turmeric (Curcuma longa L.). Ind Crop Prod, 2016, 89: 87-94.

[186]

Savitha BC, Thimmaraju R, Bhagyalakshmi N, Ravishankar GA. Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem, 2006, 41(1): 50-60.

[187]

Saw NMMT, Riedel H, Cai ZZ, Kutuk O, Smetanska I. Stimulation of anthocyanin synthesis in grape (Vitis vinifera) cell cultures by pulsed electric fields and ethephon. Plant Cell Tissue Organ, 2012, 108(1): 47-54.

[188]

Sawicki T, Wiczkowski W. The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chem, 2018, 259: 292-303.

[189]

Scaife MA, Ma CA, Ninlayarn T, Wright PC, Armenta RE. Comparative analysis of β-carotene hydroxylase genes for astaxanthin biosynthesis. J Nat Prod, 2012, 75(6): 1117-1124.

[190]

Scalbert A, Manach C, Morand C, Remesy C, Jimenez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr, 2005, 45(4): 287-306.

[191]

Scotter MJ. Methods for the determination of European Union-permitted added natural colours in foods: a review. Food Addit Contam Part A, 2011, 28(5): 527-596.

[192]

Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J, Miller DT, Yannuzzi LA, Willett W. Dietary carotenoids, Vitamins A, C, and E, and advanced age-related macular degeneration. JAMA, 1994, 272(18): 1413-1420.

[193]

Sehrawat R, Panesar PS, Swer TL, Kumar A. Response surface methodology (RSM) mediated interaction of media concentration and process parameters for the pigment production by Monascus purpureus MTCC 369 under solid state fermentation. Pigment Resin Technol, 2017, 46(1): 14-20.

[194]

Sekizawa H, Ikuta K, Mizuta K, Takechi S, Suzutani T. Relationship between polyphenol content and anti-influenza viral effects of berries. J Sci Food Agr, 2013, 93(9): 2239-2241.

[195]

Seyedin A, Yazdian F, Hatamian Zarmi A, Rasekh B, Mir-Derikvand M. Natural pigment production by monascus purpureus: bioreactor yield improvement through statistical analysis. Appl Food Biotechnol, 2015, 2(2): 23-30.

[196]

Shafi J, Sun Z, Ji M, Gu Z, Ahmad W. ANN and RSM based modelling for optimization of cell dry mass of Bacillus sp. strain B67 and its antifungal activity against Botrytiscinerea. Biotechnol Biotechnol Equip, 2018, 32(1): 58-68.

[197]

Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res, 2009

[198]

Shapter FM, Waters DLE (2014) Genome Walking. In: Henry RJ, Furtado A (eds) Cereal Genomics: methods and protocols. Methods in Molecular Biology, vol 1099. Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, Nj 07512–1165 USA, pp 133–146

[199]

Shetty RP, Endy D, Knight TF Jr. Engineering BioBrick vectors from BioBrick parts. J Biol Eng, 2008, 2: 5.

[200]

Shi F, Zhan W, Li Y, Wang X. Temperature influences beta-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffiarhodozyma. World J Microbiol Biotechnol, 2014, 30(1): 125-33.

[201]

Shi S, Liang Y, Zhang MM, Ang EL, Zhao H. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng, 2016, 33: 19-27.

[202]

Shimura K, Okada A, Okada K, Jikumaru Y, Ko K-W, Toyomasu T, Sassa T, Hasegawa M, Kodama O, Shibuya N, Koga J, Nojiri H, Yamane H. Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem, 2007, 282(47): 34013-34018.

[203]

Shrestha B, Pandey RP, Darsandhari S, Parajuli P, Sohng JK. Combinatorial approach for improved cyanidin 3-O-glucoside production in Escherichia coli. Microb Cell Fact, 2019

[204]

Si T, Luo Y, Bao Z, Zhao H. RNAi-Assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering. ACS Synth Biol, 2015, 4(3): 283-291.

[205]

Sigurdson GT, Tang PP, Giusti MM. Natural colorants: food colorants from natural sources. Annu Rev Food Sci T, 2017, 8(8): 261-280.

[206]

Simsa R, Yuen J, Stout A, Rubio N, Fogelstrand P, Kaplan DL. Extracellular heme proteins influence bovine myosatellite cell proliferation and the color of cell-based meat 2019 Foods

[207]

Singh N, Goel G, Singh N, Kumar Pathak B, Kaushik D. Modeling the red pigment production by Monascus purpureus MTCC 369 by Artificial Neural Network using rice water based medium. Food Biosci, 2015, 11: 17-22.

[208]

Solymosi K, Mysliwa-Kurdziel B. Chlorophylls and their derivatives used in food industry and medicine. Mini Rev Med Chem, 2017, 17(13): 1194-1222.

[209]

Steingroewer J, Bley T, Georgiev V, Ivanov I, Lenk F, Marchev A, Pavlov A. Bioprocessing of differentiated plant in vitro systems. Eng Life Sci, 2013, 13(1): 26-38.

[210]

Sun Z, Liu J, Zeng X, Huangfu J, Jiang Y, Wang M, Chen F. Protective actions of microalgae against endogenous and exogenous advanced glycation endproducts (AGEs) in human retinal pigment epithelial cells. Food Funct, 2011, 2(5): 251-8.

[211]

Sun L, Shang F, Duan C-q, Yan G-l. Reduction of fatty acid flux at low temperature led to enhancement of β-carotene biosynthesis in recombinant Saccharomyces cerevisiae. Korean J Chem Eng, 2015, 32(7): 1354-1360.

[212]

Sun Y, Sun L, Shang F, Yan G. Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids. Process Biochem, 2016, 51(5): 568-577.

[213]

Sun L, Atkinson CA, Lee Y-G, Jin Y-S. High-level beta-carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1). Biotechnol Bioeng, 2020, 117(11): 3522-3532.

[214]

Sun D, Zhou XG, Liu C, Zhu JR, Ru YR, Liu WJ, Liu JW. Fnr negatively regulates prodigiosin synthesis in Serratia sp. ATCC 39006 during aerobic fermentation. Front Microbiol, 2021

[215]

Swarna J, Lokeswari TS, Smita M, Ravindhran R. Characterisation and determination of in vitro antioxidant potential of betalains from Talinum triangulare (Jacq.) Willd. Food Chem, 2013, 141(4): 4382-4390.

[216]

Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J, 2008, 54(4): 733-49.

[217]

Tang HB, Ye ZW, Liu C, Guo LQ, Lin JF, Wan H, Yun F, Kang LZ. Increasing of the contain of carotenoids in caterpillar mushroom, cordyceps militaris (Ascomycetes) by using the fungal elicitors cultivation. Int J Med Mushrooms, 2019, 21(12): 1181-1191.

[218]

Timoneda A, Sheehan H, Feng T, Lopez-Nieves S, Maeda HA, Brockington S. Redirecting primary metabolism to boost production of tyrosine-derived specialised metabolites in planta. Sci Reo, 2018

[219]

Tkáčová J, Čaplová J, Klempová T, Čertík M. Correlation between lipid and carotenoid synthesis in torularhodin-producing Rhodotorula glutinis. Ann Microbiol, 2017, 67(8): 541-551.

[220]

Tramontin LRR, Kildegaard KR, Sudarsan S, Borodina I. Enhancement of astaxanthin biosynthesis in oleaginous yeast Yarrowia lipolytica via microalgal pathway. Microorganisms, 2019

[221]

Ukibe K, Hashida K, Yoshida N, Takagi H. Metabolic engineering of Saccharomycescerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol, 2009, 75(22): 7205-7211.

[222]

Velisek J, Davidek J, Cejpek K. Biosynthesis of food constituents: natural pigments. Part 1—a review. Czech J Food Sci, 2007, 25(6): 291-315.

[223]

Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae JC, Oh BT. Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng, 2010, 109(4): 346-350.

[224]

Venayak N, Anesiadis N, Cluett WR, Mahadevan R. Engineering metabolism through dynamic control. Curr Opin Biotechnol, 2015, 34: 142-152.

[225]

Venil CK, Zakaria ZA, Ahmad WA. Bacterial pigments and their applications. Process Biochem, 2013, 48(7): 1065-1079.

[226]

Verwaal R, Jiang Y, Wang J, Daran J-M, Sandmann G, van den Berg JA, van Ooyen AJJ. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response. Yeast, 2010, 27(12): 983-998.

[227]

Vranova E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol, 2013, 64(64): 665-700.

[228]

Wan X, Zhou X-R, Moncalian G, Su L, Chen W-C, Zhu H-Z, Chen D, Gong Y-M, Huang F-H, Deng Q-C. Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Prog Lipid Res, 2021, 81

[229]

Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894-U133.

[230]

Wang H, Li P, Liu Y, Ren Z, Wang G. Overproduction of a potential red pigment by a specific self-immobilization biomembrane-surface liquid culture of Penicillium novae-zeelandiae. Bioprocess Biosyst Eng, 2012, 35(8): 1407-1416.

[231]

Wang S, Zhang S, Xiao A, Rasmussen M, Skidmore C, Zhan J. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab Eng, 2015, 29: 153-159.

[232]

Wang X, Li Z, Policarpio L, Koffas MAG, Zhang H. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering. Appl Microbiol Biot, 2020, 104(11): 4849-4861.

[233]

Wang L, Liu Z, Jiang H, Mao X. Biotechnology advances in β-carotene production by microorganisms. Trends Food Sci Tech, 2021, 111: 322-332.

[234]

Wang Y, Wang Y, Chen X, Gao N, Wu Y, Zhang H. Protoplast fusion between Blakeslea trispora 14,271 (+) and 14,272 (−) enhanced the yield of lycopene and β-carotene. World J Microb Biotechnl, 2021, 37(4): 58.

[235]

Warhade MI, Badere RS. Fusarium oxysporum cell elicitor enhances betalain content in the cell suspension culture of Celosia cristata. Physiol Mol Biol Plants, 2018, 24(2): 285-293.

[236]

Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LBA, Gill RT. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol, 2010, 28(8): 856-U138.

[237]

Wölwer-Rieck U, May B, Lankes C, Wüst M. Methylerythritol and mevalonate pathway contributions to biosynthesis of mono-, sesqui-, and diterpenes in glandular trichomes and leaves of Stevia rebaudiana bertoni. J Agr Food Chem, 2014, 62(11): 2428-2435.

[238]

Wrolstad RE, Culver CA. Alternatives to those artificial FD&C food colorants. Annu Rev Food Sci T, 2012, 3(1): 59-77.

[239]

Wu J, Du G, Zhou J, Chen J. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng, 2013, 16: 48-55.

[240]

Wu K, Zhang X, Sun S, Wang X. Factors affecting the accumulation of curcumin in microrhizomes of Curcuma aromatica salisb. Biomed Res Int, 2015

[241]

Wu T, Ye L, Zhao D, Li S, Li Q, Zhang B, Bi C, Zhang X. Membrane engineering—a novel strategy to enhance the production and accumulation of beta-carotene in Escherichia coli. Metab Eng, 2017, 43(Pt A): 85-91.

[242]

Wu T, Li S, Ye L, Zhao D, Fan F, Li Q, Zhang B, Bi C, Zhang X. Engineering an artificial membrane vesicle trafficking system (AMVTS) for the excretion of beta-carotene in Escherichia coli. ACS Synth Biol, 2019, 8(5): 1037-1046.

[243]

Wu Y, Yan P, Liu X, Wang Z, Tang Y-J, Chen T, Zhao X. Combinatorial expression of different β-carotene hydroxylases and ketolases in Escherichia coli for increased astaxanthin production. J Ind Microbiol Biotechnol, 2019, 46(11): 1505-1516.

[244]

Wu J, Chen W, Zhang Y, Zhang X, Jin J-M, Tang S-Y. Metabolic engineering for improved curcumin biosynthesis in Escherichia coli. J Agr Food Chem, 2020, 68(39): 10772-10779.

[245]

Wu Y, Yan P, Li Y, Liu X, Wang Z, Chen T, Zhao X. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply. Front Bioeng Biotechnol, 2020

[246]

Xiao JB, Hogger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem, 2015, 22(1): 23-38.

[247]

Xie W, Liu M, Lv X, Lu W, Gu J, Yu H. Construction of a controllable beta-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng, 2014, 111(1): 125-33.

[248]

Xie W, Lv X, Ye L, Zhou P, Yu H. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng, 2015, 30: 69-78.

[249]

Xie W, Ye L, Lv X, Xu H, Yu H. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng, 2015, 28: 8-18.

[250]

Xu N, Wei L, Liu J. Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World Microbiol Biotechnol, 2019

[251]

Xue J, Ahring BK. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol, 2011, 77(7): 2399-2405.

[252]

Yajun Y, Chemler J, Lixuan H, Martens S, Koffas MAG. Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol, 2005, 71(7): 3617-3623.

[253]

Yamagata K, Tagami M, Yamori Y. Dietary polyphenols regulate endothelial function and prevent cardiovascular disease. Nutrition, 2015, 31(1): 28-37.

[254]

Yan Y, Li Z, Koffas MAG. High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol Bioeng, 2008, 100(1): 126-140.

[255]

Yan GL, Wen KR, Duan CQ. Enhancement of beta-carotene production by over-expression of HMG-CoA reductase coupled with addition of ergosterol biosynthesis inhibitors in recombinant Saccharomyces cerevisiae. Curr Microbiol, 2012, 64(2): 159-63.

[256]

Yang JM, Guo LZ. Biosynthesis of beta-carotene in engineered E. coli using the MEP and MVA pathways. Microb Cell Factories, 2014

[257]

Yang Y, Liu B, Du X, Li P, Liang B, Cheng X, Du L, Huang D, Wang L, Wang S. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci Rep, 2015, 5: 8331.

[258]

Yang D, Park SY, Lee SY. Production of rainbow colorants by metabolically engineered Escherichia coli. Adv Sci, 2021, 8(13): 2100743.

[259]

Ye L, Lv X, Yu H. Assembly of biosynthetic pathways in Saccharomyces cerevisiae using a marker recyclable integrative plasmid toolbox. Front Chem Sci Eng, 2017, 11(1): 126-132.

[260]

Ye L, Zhu X, Wu T, Wang W, Zhao D, Bi C, Zhang X. Optimizing the localization of astaxanthin enzymes for improved productivity. Biotechnol Biofuels, 2018

[261]

Yen H-W, Palanisamy G, Su G-C. The influences of supplemental vegetable oils on the growth and β-carotene accumulation of oleaginous Yeast-Rhodotorula glutinis. Biotechnol Bioprocess Eng, 2019, 24(3): 522-528.

[262]

Yolmeh M, Khomeiri M. Using physical and chemical mutagens for enhanced carotenoid production from Rhodotorula glutinis (PTCC 5256). Biocatal Agric Biotechnol, 2016, 8: 158-166.

[263]

Yolmeh M, Khomeiri M, Ghorbani M, Ghaemi E, Ramezanpour SS. High efficiency pigment production from Micrococcus roseus (PTCC 1411) under ultraviolet irradiation. Biocatal Agric Biotechnol, 2017, 9: 156-161.

[264]

Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J Biotechnol, 2009, 140(3–4): 218-26.

[265]

Yuan LZ, Rouviere PE, Larossa RA, Suh W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng, 2006, 8(1): 79-90.

[266]

Zare K, Nazemiyeh H, Movafeghi A, Khosrowshahli M, Motallebi-Azar A, Dadpour M, Omidi Y. Bioprocess engineering of Echiumitalicum L.: induction of shikonin and alkannin derivatives by two-liquid-phase suspension cultures. Plant Cell Tissue Organ, 2010, 100(2): 157-164.

[267]

Zelcbuch L, Antonovsky N, Bar-Even A, Levin-Karp A, Barenholz U, Dayagi M, Liebermeister W, Flamholz A, Noor E, Amram S, Brandis A, Bareia T, Yofe I, Jubran H, Milo R. Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Res, 2013, 41(9

[268]

Zha J, Zang Y, Mattozzi M, Plassmeier J, Gupta M, Wu X, Clarkson S, Koffas MAG. Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. Microb Cell Fact, 2018

[269]

Zhang B, Zheng LP, Wang JW. Nitric oxide elicitation for secondary metabolite production in cultured plant cells. Appl Microbiol Biotechnol, 2012, 93(2): 455-466.

[270]

Zhang C, Wang Z, Zhao J, Li Q, Huang C, Zhu L, Lu D. Neuroprotective effect of lutein on NMDA-Induced retinal ganglion cell injury in rat retina. Cell Mol Neurobiol, 2016, 36(4): 531-40.

[271]

Zhang Y, Navarro E, Canovas-Marquez JT, Almagro L, Chen H, Chen YQ, Zhang H, Torres-Martinez S, Chen W, Garre V. A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate beta-carotene over-producing strains by genetic engineering. Microb Cell Fact, 2016, 15: 99.

[272]

Zhang W, Liu H, Li X, Liu D, Dong X-T, Li F-F, Wang E-X, Wang E-X, Li B-Z, Yuan Y-J. Production of naringenin from D-xylose with co-culture of E-coli and S-cerevisiae. Eng Life Sci, 2017, 17(9): 1021-1029.

[273]

Zhang C, Seow VY, Chen X, Too H-P. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli. Nat Commun, 2018

[274]

Zhang C, Seow VY, Chen X, Too H-P. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli. Nat Commun, 2018, 9: 1858.

[275]

Zhao J. Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci, 2015, 20(9): 576-85.

[276]

Zhao CY, Nabity PD. Phylloxerids share ancestral carotenoid biosynthesis genes of fungal origin with aphids and adelgids. PLoS ONE, 2017

[277]

Zhao YR, Yang JM, Qin B, Li YH, Sun YZ, Su SZ, Xian M. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol, 2011, 90(6): 1915-1922.

[278]

Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y. Engineering central metabolic modules of Escherichia coli for improving beta-carotene production. Metab Eng, 2013, 17: 42-50.

[279]

Zhao X, Shi F, Zhan W. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae. Lett Appl Microbiol, 2015, 61(4): 354-360.

[280]

Zhao XR, Choi KR, Lee SY. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat Catal, 2018, 1(9): 720-728.

[281]

Zhong M, Huang S, Wang H, Huang Y, Xu J, Zhang L. Optimization of ultrasonic-assisted extraction of pigment from Dioscorea cirrhosa by response surface methodology and evaluation of its stability. Rsc Adv, 2019, 9(3): 1576-1585.

[282]

Zhou P, Ye L, Xie W, Lv X, Yu H. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt. Appl Microbiol Biotechnol, 2015, 99(20): 8419-28.

[283]

Zhou Q, Zhang P, Zhang G. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources. Bioresour Technol, 2015, 179: 505-509.

[284]

Zhou P, Xie W, Li A, Wang F, Yao Z, Bian Q, Zhu Y, Yu H, Ye L. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Enzyme Microb Technol, 2017, 100: 28-36.

[285]

Zhou P, Xie W, Li A, Wang F, Yao Z, Bian Q, Zhu Y, Yu H, Ye L. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Enzyme Microb Tech, 2017, 100: 28-36.

[286]

Zhou S, Du G, Kang Z, Li J, Chen J, Li H, Zhou J. The application of powerful promoters to enhance gene expression in industrial microorganisms. World J Microb Biotechnol, 2017

[287]

Zhou P, Xie W, Yao Z, Zhu Y, Ye L, Yu H. Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch. Biotechnol Bioeng, 2018, 115(5): 1321-1330.

[288]

Zhou P, Li M, Shen B, Yao Z, Bian Q, Ye L, Yu H. Directed coevolution of beta-carotene ketolase and hydroxylase and its application in temperature-regulated biosynthesis of astaxanthin. J Agric Food Chem, 2019, 67(4): 1072-1080.

Funding

National Natural Science Foundation of China(22108097)

Natural Science Foundation of Jiangsu Province(BK20200616)

National Key Research and Development Program of China(2018YFA0901800)

China Postdoctoral Science Foundation(2020M671339)

Natural Science Foundation of Zhejiang Province(LZ20B060002)

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/