Kinetic modeling and process analysis for photo-production of β-carotene in Dunaliella salina

Yimei Xi , Jiali Zhang , Fantao Kong , Jian Che , Zhanyou Chi

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 4

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 4 DOI: 10.1186/s40643-022-00495-6
Research

Kinetic modeling and process analysis for photo-production of β-carotene in Dunaliella salina

Author information +
History +
PDF

Abstract

Dunaliella salina is a green microalga with the great potential to generate natural β-carotene. However, the corresponding mathematical models to guide optimized production of β-carotene in Dunaliella salina (D. salina) are not yet available. In this study, dynamic models were proposed to simulate effects of environmental factors on cell growth and β-carotene production in D. salina using online monitoring system. Moreover, the identification model of the parameter variables was established, and an adaptive particle swarm optimization algorithm based on parameter sensitivity analysis was constructed to solve the premature problem of particle swarm algorithm. The proposed kinetic model is characterized by high accuracy and predictability through experimental verification, which indicates its competence for future process design, control, and optimization. Based on the model established in this study, the optimal environmental factors for both β-carotene production and microalgae growth were identified. The approaches created are potentially useful for microalga Dunaliella salina cultivation and high-value β-carotene production.

Keywords

Dunaliella salina / Dynamic kinetic modeling / Cultivation optimization / Environmental factors / β-Carotene production

Cite this article

Download citation ▾
Yimei Xi, Jiali Zhang, Fantao Kong, Jian Che, Zhanyou Chi. Kinetic modeling and process analysis for photo-production of β-carotene in Dunaliella salina. Bioresources and Bioprocessing, 2022, 9(1): 4 DOI:10.1186/s40643-022-00495-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benamotz A, Katz A, Avron M. Accumulation of beta-carotene in halotolerant algae—purification and characterization of beta-carotene-rich globules from Dunaliella-bardawil (chlorophyceae). J Phycol, 1982, 18: 529-537.

[2]

Bernard, O, Masci, P, Sciandra, A (2009) A photobioreactor model in nitrogen limited conditions. MATHMOD 09 Vienna. pp. 1521–1530.

[3]

Bonnefond H, Moelants N, Talec A, Bernard O, Sciandra A. Concomitant effects of light and temperature diel variations on the growth rate and lipid production of Dunaliella salina. Algal Res, 2016, 14: 72-78.

[4]

Cao XP, Xi YM, Liu J, Chu YD, Wu PC, Yang M, Chi ZY, Xue S. New insights into the CO2-steady and pH-steady cultivations of two microalgae based on continuous online parameter monitoring. Algal Res, 2019, 38: 1-6.

[5]

Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS. Microalgae biorefinery: high value products perspectives. Bioresour Technol, 2017, 229: 53-62.

[6]

Coppens J, Grunert O, Van den Hende S, Vanhoutte I, Boon N, Haesaert G, De Gelder L. The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Phycol, 2016, 28: 2367-2377.

[7]

del Rio-Chanona EA, Ahmed NR, Zhang DD, Lu YH, Jing KJ. Kinetic modeling and process analysis for Desmodesmus sp lutein photo-production. AIChE J, 2017, 63: 2546-2554.

[8]

del Rio-Chanona EA, Liu J, Wagner JL, Zhang DD, Meng YY, Xue S, Shah N. Dynamic modeling of green algae cultivation in a photobioreactor for sustainable biodiesel production. Biotechnol Bioeng, 2018, 115: 359-370.

[9]

Fachet M, Flassig RJ, Rihko-Struckmann L, Sundmacher K. A dynamic growth model of Dunaliella salina: parameter identification and profile likelihood analysis. Bioresour Technol, 2014, 173: 21-31.

[10]

Fachet M, Hermsdorf D, Rihko-Struckmann L, Sundmacher K. Flow cytometry enables dynamic tracking of algal stress response: a case study using carotenogenesis in Dunaliellasalina. Algal Res, 2016, 13: 227-234.

[11]

Gateau H, Solymosi K, Marchand J, Schoefs B. Carotenoids of microalgae used in food industry and medicine. Mini Rev Med Chem, 2017, 17: 1140-1172.

[12]

Guiheneuf F, Stengel DB. Interactive effects of light and temperature on pigments and n-3 LC-PUFA-enriched oil accumulation in batch-cultivated Pavlova lutheri using high-bicarbonate supply. Algal Res, 2017, 23: 113-125.

[13]

Henriquez V, Escobar C, Galarza J, Gimpel J. Carotenoids in microalgae. Subcell Biochem, 2016, 79: 219-237.

[14]

Holdmann C, Schmid-Staiger U, Hornstein H, Hirth T. Keeping the light energy constant—cultivation of Chlorella sorokiniana at different specific light availabilities and different photoperiods. Algal Res, 2018, 29: 61-70.

[15]

Jiang H, Lin X, Lei M, Kong X. Effects of temperature on growth, astaxanthin accumulation and antioxidative capacity in Haematococcuspluvialis. J Phycol, 2015, 36: 63-68.

[16]

Kim S-H, Liu K-H, Lee S-Y, Hong S-J, Cho B-K, Lee H, Lee C-G, Choi H-K. effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliellatertiolecta culture. PLoS ONE, 2013, 8: 1-10.

[17]

Kong F, Romero IT, Warakanont J, Li-Beisson Y. Lipid catabolism in microalgae. New Phytol, 2018, 218: 1340-1348.

[18]

Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH. Carotenoid and fatty acid metabolism in light-stressed Dunaliellasalina. Biotechnol Bioeng, 2010, 106: 638-648.

[19]

Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliellasalina, a unicellular green microalga. J Phycol, 2012, 162: 21-27.

[20]

Liu J, Yao CH, Meng YY, Cao XP, Wu PC, Xue S. The delta F/F-m '-guided supply of nitrogen in culture medium facilitates sustainable production of TAG in Nannochloropsisoceanica IMET1. Biotechnol Biofuels, 2018, 11: 1-10.

[21]

Paillie-Jimenez ME, Stincone P, Brandelli A. Natural pigments of microbial origin. Front Sustain Food Syst, 2020, 4: 590439.

[22]

Salome PA, Merchant SS. A series of fortunate events: introducing chlamydomonas as a reference organism. Plant Cell, 2019, 31: 1682-1707.

[23]

Straka L, Rittmann BE. Growth kinetics and mathematical modeling of Synechocystis sp. PCC 6803 under flashing light. Biotechnol Bioeng, 2019, 116: 469-474.

[24]

Viruela A, Aparicio S, Robles Á, Borrás Falomir L, Serralta J, Seco A, Ferrer J. Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and -deplete culture conditions. Sci Total Environ, 2021, 797: 1-15.

[25]

Wu Z, Duangmanee P, Zhao P, Juntawong N, Ma CH. The effects of light, temperature, and nutrition on growth and pigment accumulation of three Dunaliella salina strains isolated from saline soil. Jundishapur J Microbiol, 2016, 9: 1-6.

[26]

Xi Y, Wang J, Xue S, Chi Z. Beta-carotene production from Dunaliella salina cultivated with bicarbonate as carbon source. J Microbiol Biotechnol, 2020, 30: 868-877.

[27]

Zeriouh O, Reinoso-Moreno JV, Lopez-Rosales L, Sierra-Martin B, Ceron-Garcia MC, Sanchez-Miron A, Fernandez-Barbero A, Garcia-Camachoa F, Molina-Grima E. A methodological study of adhesion dynamics in a batch culture of the marine microalga Nannochloropsisgaditana. Algal Res, 2017, 23: 240-254.

[28]

Zhang D, Dechatiwongse P, Hellgardt K. Modelling light transmission, cyanobacterial growth kinetics and fluid dynamics in a laboratory scale multiphase photo-bioreactor for biological hydrogen production. Algal Res, 2015, 8: 99-107.

[29]

Zhang D, Wan M, del Rio-Chanona EA, Huang J, Wang W, Li Y, Vassiliadis VS. Dynamic modelling of Haematococcuspluvialis photoinduction for astaxanthin production in both attached and suspended photobioreactors. Algal Res, 2016, 13: 69-78.

[30]

Zhu C, Zhu H, Cheng L, Chi Z. Bicarbonate-based carbon capture and algal production system on ocean with floating inflatable-membrane photobioreactor. J Appl Phycol, 2018, 30: 875-885.

[31]

Zhu CB, Zhai XQ, Jia J, Wang JH, Han DS, Li YH, Tang YJ, Chi ZY. Seawater desalination concentrate for cultivation of Dunaliella salina with floating photobioreactor to produce beta-carotene. Algal Res, 2018, 35: 319-324.

[32]

Zhu C, Xi Y, Zhai X, Wang J, Kong F, Chi Z. Pilot outdoor cultivation of an extreme alkalihalophilic Trebouxiophyte in a floating photobioreactor using bicarbonate as carbon source. J Clean Prod, 2021, 283: 1-13.

Funding

National Natural Science Foundation of China(31900221)

Natural Science Foundation of Liaoning Province(2020-MS-102)

Fundamental Research Funds for Central Universities of the Central South University(DUT21LK14)

Major and Special Program on Science and Technology Projects in Dalian City(2020ZD23SN009)

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/