Structural diversity of marine anti-freezing proteins, properties and potential applications: a review

Soudabeh Ghalamara , Sara Silva , Carla Brazinha , Manuela Pintado

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 5

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 5 DOI: 10.1186/s40643-022-00494-7
Review

Structural diversity of marine anti-freezing proteins, properties and potential applications: a review

Author information +
History +
PDF

Abstract

Cold-adapted organisms, such as fishes, insects, plants and bacteria produce a group of proteins known as antifreeze proteins (AFPs). The specific functions of AFPs, including thermal hysteresis (TH), ice recrystallization inhibition (IRI), dynamic ice shaping (DIS) and interaction with membranes, attracted significant interest for their incorporation into commercial products. AFPs represent their effects by lowering the water freezing point as well as preventing the growth of ice crystals and recrystallization during frozen storage. The potential of AFPs to modify ice growth results in ice crystal stabilizing over a defined temperature range and inhibiting ice recrystallization, which could minimize drip loss during thawing, improve the quality and increase the shelf-life of frozen products. Most cryopreservation studies using marine-derived AFPs have shown that the addition of AFPs can increase post-thaw viability. Nevertheless, the reduced availability of bulk proteins and the need of biotechnological techniques for industrial production, limit the possible usage in foods. Despite all these drawbacks, relatively small concentrations are enough to show activity, which suggests AFPs as potential food additives in the future. The present work aims to review the results of numerous investigations on marine-derived AFPs and discuss their structure, function, physicochemical properties, purification and potential applications.

Keywords

Marine antifreeze proteins / Ice recrystallization inhibition (IRI) / Thermal hysteresis (TH) / Function / Potential applications

Cite this article

Download citation ▾
Soudabeh Ghalamara, Sara Silva, Carla Brazinha, Manuela Pintado. Structural diversity of marine anti-freezing proteins, properties and potential applications: a review. Bioresources and Bioprocessing, 2022, 9(1): 5 DOI:10.1186/s40643-022-00494-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abraham S, Keillor K, Capicciotti CJ, Perley-Robertson GE, Keillor JW, Ben RN. Quantitative analysis of the efficacy and potency of novel small molecule ice recrystallization inhibitors. Cryst Growth Des, 2015, 15: 5034-5039.

[2]

Adar C, Sirotinskaya V, Dolev MB, Friehmann T, Braslavsky I. Falling water ice affinity purification of ice-binding proteins. Sci Rep, 2018, 8: 1-9.

[3]

Ahlgren JA, Cheng CC, Schrag JD, DeVries AL. Freezing avoidance and the distribution of antifreeze glycopeptides in body fluids and tissues of Antarctic fish. J Exp Biol, 1988, 137: 549-563.

[4]

Amir G, Rubinsky B, Kassif Y, Horowitz L, Smolinsky AK, Lavee J. Preservation of myocyte structure and mitochondrial integrity in subzero cryopreservation of mammalian hearts for transplantation using antifreeze proteins—an electron microscopy study. J Cardiothorac Surg, 2003, 24: 292-297.

[5]

Anisuzzaman AK, Anderson L, Navia JL. Synthesis of a close analog of the repeating unit of the antifreeze glycoproteins of polar fish. Carbohydr Res, 1988, 174: 265-278.

[6]

Antson AA, Smith DJ, Roper DI, Lewis S, Caves LSD, Verma CS, Buckley SL, Lillford PJ, Hubbard RE. Understanding the mechanism of ice binding by type III antifreeze proteins. Mol Biol, 2001, 305: 875-889.

[7]

Arai T, Fukami D, Hoshino T, Kondo H, Tsuda S. Ice-binding proteins from the fungus Antarctomyces psychrotrophicus possibly originate from two different bacteria through horizontal gene transfer. FEBS J, 2018, 286: 946-962.

[8]

Baardsnes J, Davies PL. Sialic acid synthase: The origin of fish type III antifreeze protein?. Trends Biochem Sci, 2001, 26: 468-469.

[9]

Baardsnes J, Davies PL. Contribution of hydrophobic residues to ice binding by fish type III antifreeze protein. Biochim Biophys Acta, 2002, 1601: 49-54.

[10]

Baderschneider B, Crevel RWR, Earl LK, Lalljie A, Sanders DJ, Sanders IJ. Sequence analysis and resistance to pepsin hydrolysis as part of an assessment of the potential allergenicity of ice structuring protein type III HPLC 12. Food Chem Toxicol, 2002, 40: 965-978.

[11]

Bagis H, Akkoç T, Taş A, Aktoprakligil D. Cryogenic effect of antifreeze protein on transgenic mouse ovaries and the production of live offspring by orthotopic transplantation of cryopreserved mouse ovaries. Mol Reprod Dev, 2008, 75: 608-613.

[12]

Baguisi A, Ara A, Crosby TF, Roche JF, Boland MP. Hypothermic storage of sheep embryos with antifreeze proteins development in vitro and in vivo. Theriogenology, 1997, 48: 1017-1024.

[13]

Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K. Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environ Microbiol, 2010, 12: 1041-1052.

[14]

Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology, 2011, 63: 210-219.

[15]

Biggs CI, Bailey TL, Graham B, Stubbs C, Fayter A, Gibson MI. Polymer mimics of biomacromolecular antifreezes. Nat Commun, 2017, 8: 1-12.

[16]

Bindslev-Jensen C, Sten E, Earl LK, Crevel RWR, Bindslev-Jensen U, Hansen TK, Skov PS, Poulsen LK. Assessment of the potential allergenicity of ice structuring protein type III HPLC 12 using the FAO/WHO 2001 decision tree for novel foods. Food Chem Toxicol, 2003, 41: 81-87.

[17]

Boo SY, Wong CMVL, Rodrigues KF, Najimudin N, Murad AMA, Mahadi NM. Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biol, 2013, 36: 381-389.

[18]

Boonsupthip W, Lee TC. Application of antifreeze protein for food preservation: Effect of Type III antifreeze protein for preservation of gel-forming of frozen and chilled actomyosin. J Food Sci, 2003, 68: 1804-1809.

[19]

Bouvet V, Ben RN. Antifreeze glycoproteins. Cell Biochem Biophys, 2003, 39: 133-144.

[20]

Breton TS, Anderson JL, Goetz FW, Berlinsky DL. Identification of ovarian gene expression patterns during vitellogenesis in Atlantic cod (Gadus morhua). Gen Comp Endocrinol, 2012, 179: 296-304.

[21]

Budke C, Koop T. Ice recrystallization inhibition and molecular recognition of ice faces by poly (vinyl alcohol). Chem Phys Chem, 2006, 7: 2601-2606.

[22]

Budke C, Heggemann C, Koch M, Sewald N, Koop T. Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW theory. J Phys Chem B, 2009, 113: 2865-2873.

[23]

Budke C, Dreyer A, Jaeger J, Gimpel K, Berkemeier T, Bonin AS, Nagel L, Plattner C, DeVries AL, Sewald N, Koop T. Quantitative efficacy classification of ice recrystallization inhibition agents. Cryst Growth Des, 2014, 14: 4285-4294.

[24]

Burcham TS, Knauf MJ, Osuga DT, Feeney RE, Yeh Y. Antifreeze glycoproteins: influence of polymer length and ice crystal habit on activity. Biopolymers, 1984, 23: 1379-1395.

[25]

Bush CA, Feeney RE. Conformation of the glycotripeptide repeating unit of antifreeze glycoprotein of polar fish as determined from the fully assigned proton NMR spectrum. Int J Pept Protein Res, 1986, 28: 386-397.

[26]

Bush CA, Feeney RE, Osuga DT, Ralapati S, Yeh YI. Antifreeze glycoprotein. Conformational model based on vacuum ultraviolet circular dichroism data. Int J Pept Protein Res, 1981, 17: 125-129.

[27]

Can Ö, Holland NB. Conjugation of type I antifreeze protein to polyallylamine increases thermal hysteresis activity. Bioconjug Chem, 2011, 22: 2166-2171.

[28]

Carpenter JF, Hansen TN. Antifreeze protein modulates cell survival during cryopreservation: Mediation through influence on ice crystal growth. Proc Natl Acad Sci USA, 1992, 89: 8953-8957.

[29]

Celik Y, Drori R, Pertaya-Braun N, Altan A, Barton T, Bar-Dolev M, Groisman A, Davies PL, Braslavsky I. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth. Proc Natl Acad Sci USA, 2013, 110: 1309-1314.

[30]

Chakrabartty A, Hew CL, Shears M, Fletcher G. Primary structures of the alanine-rich antifreeze polypeptides from grubby sculpin, Myoxocephalus aenaeus. Can J Zool, 1988, 66: 403-408.

[31]

Chakrabartty A, Yang DSC, Hew CL. Structure-function relationship in a winter flounder antifreeze polypeptide: II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides. J Biol Chem, 1989, 264: 11313-11316.

[32]

Chao H, Davies PL, Carpenter JF. Effects of antifreeze proteins on red blood cell survival during cryopreservation. J Exp Biol, 1996, 199: 2071-2076.

[33]

Chapsky L, Rubinsky B. Kinetics of antifreeze protein-induced ice growth inhibition. FEBS Lett, 1997, 412: 241-244.

[34]

Chen L, Devries AL, Cheng CHC. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci USA, 1997, 94: 3817-3822.

[35]

Cheng CHC. Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev, 1998, 8: 715-720.

[36]

Cheng CHC, Chen L. Evolution of an antifreeze glycoprotein. Nature, 1999, 401: 443-444.

[37]

Cheng CHC, DeVries AL. Structures of antifreeze peptides from the antarctic eel pout, Austrolycicthys brachycephalus. Biochim Biophys Acta-Protein Struct Mol Enzymol, 1989, 997: 55-64.

[38]

Cheng J, Hanada Y, Miura A, Tsuda S, Kondo H. Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus. Biochem J, 2016, 473: 4011-4026.

[39]

Crevel RWR, Fedyk JK, Spurgeon MJ. Antifreeze proteins: Characteristics, occurrence and human exposure. Food Chem Toxicol, 2002, 40: 899-903.

[40]

Crilly JF, Russell AB, Cox AR, Cebola DJ. Designing multiscale structures for desired properties of ice cream. Ind Eng Chem Res, 2008, 47: 6362-6367.

[41]

Dalal P, Sonnichsen FD. Source of the ice-binding specificity of antifreeze protein type I. J Chem Inf Comput Sci, 2002, 40: 1276-1284.

[42]

Davies PL, Hew CL. Biochemistry of fish antifreeze proteins. FASEB J, 1990, 4: 2460-2468.

[43]

Davies PL, Baardsnes J, Kuiper MJ, Walker VK. Structure and function of antifreeze proteins. Philos Trans R Soc Lon B Biol Sci, 2002, 357: 927-935.

[44]

Deller RC, Vatish M, Mitchell DA, Gibson MI. Glycerol-free cryopreservation of red blood cells enabled by ice-recrystallization-inhibiting polymers. ACS Biomater Sci Eng, 2015, 1: 789-794.

[45]

Deluca CI, Davies PL, Ye Q, Jia Z. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. J Mol Biol, 1998, 275: 515-525.

[46]

Deng G, Laursen RA. Isolation and characterization of an antifreeze protein from the longhorn sculpin, Myoxocephalus octodecimspinosis. Biochim Biophys Acta-Protein Struct Mol Enzymol, 1998, 1388: 305-314.

[47]

Deng G, Andrews DW, Laursen RA. Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis. FEBS Lett, 1997, 402: 17-20.

[48]

Deng C, Cheng CHC, Ye H, He X, Chen L. Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci USA, 2010, 107: 21593-21598.

[49]

DeVries AL. Antifreeze glycopeptides and peptides: interactions with ice and water. Methods Enzymol, 1986, 12: 293-303.

[50]

DeVries AL, Cheng CHC. Antifreeze proteins and organismal freezing avoidance in polar fishes. Fish Physiol, 2005, 22: 155-201.

[51]

DeVries AL, Wohlschlag DE. Freezing resistance in some Antarctic fishes. Science, 1969, 163: 1073-1075.

[52]

DeVries AL, Komatsu SK, Feeney RE. Chemical and physical properties of freezing point–depressing glycoproteins from Antarctic fishes. J Biol Chem, 1970, 245: 2901-2908.

[53]

Devries AL, Lin Y. Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochim Biophys Acta-Protein Struct, 1977, 495: 388-392.

[54]

Ding X, Zhang H, Chen H, Wang L, Qian H, Qi X. Extraction, purification and identification of antifreeze proteins from cold acclimated malting barley (Hordeum vulgare L.). Food Chem, 2015, 175: 74-81.

[55]

Do H, Kim SJ, Kim HJ, Lee JH. Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1. Acta Crystallogr D, 2014, 70: 1061-1073.

[56]

Drickamer K. C-type lectin-like domains. Curr Opin in Struct Biol, 1999, 9: 585-590.

[57]

Duman JG, Devries AL. Freezing resistance in winter flounder Pseudopleuronectes americanus. Nature, 1974, 247: 237-238.

[58]

Duman JG, DeVries AL. Isolation, characterization, and physical properties of protein antifreezes from the winter flounder, Pseudopleuronectes americanus. Comp Biochem Physiol, 1976, 54: 375-380.

[59]

Eicken H. The role of sea ice in structuring Antarctic ecosystems. Polar Biol, 1992, 12: 3-13.

[60]

European Food Safety Authority (EFSA). Safety of ‘ice structuring protein (ISP)’ scientific opinion of the panel on dietetic products, nutrition and allergies and of the Panel on genetically modified Organisms. EFSA J, 2008, 6(8): 768.

[61]

Ewart KV, Fletcher GL. Isolation and characterization of antifreeze proteins from smelt (Osmerus mordax) and Atlantic herring (Clupea harengus harengus). Can J Zool, 1990, 68: 1652-1658.

[62]

Ewart KV, Rubinsky B, Fletcher GL. Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochem Biophys Res Commun, 1992, 185: 335-340.

[63]

Ewart KV, Li Z, Yang DSC, Fletcher GL, Hew CL. The ice-binding site of Atlantic Herring antifreeze protein corresponds to the carbohydrate-binding site of C-Type Lectins. Biochemistry, 1998, 37: 4080-4085.

[64]

Feeney RE, Yeh Y. Antifreeze proteins from fish bloods. Adv Protein Chem, 1978, 32: 191-282.

[65]

Feeney RE, Yeh Y. Antifreeze proteins: Current status and possible food uses. Trends Food Sci Technol, 1998, 9: 102-106.

[66]

Fletcher GL, Addison RF, Slaughter D, Hew CL. Antifreeze proteins in the Arctic shorthorn sculpin (Myoxocephalus scorpius). Arctic, 1982, 35: 302-306.

[67]

Fletcher GL, Hew CL, Davies PL. Antifreeze proteins of Teleost fishes. Annu Rev Physiol, 2001, 63: 359-390.

[68]

Franks F, Morris ER. Blood glycoprotein from Antarctic fish: possible conformational origin of antifreeze activity. Biochim Biophys Acta, 1978, 540: 346-356.

[69]

Fuller BJ. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Lett, 2004, 25: 375-388.

[70]

Gallagher KR, Sharp KA. Analysis of thermal hysteresis protein hydration using the random network model. Biophys Chem, 2003, 105: 195-209.

[71]

Garcia-Arribas O, Mateo R, Tomczak MM, Davies PL, Mateu MG. Thermodynamic stability of a cold-adapted protein, type III antifreeze protein, and energetic contribution of salt bridges. Protein Sci, 2006, 16: 227-238.

[72]

Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL. A Ca2+-dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold. Biochemistry, 2008, 411: 171-180.

[73]

Garnham CP, Natarajan A, Middleton AJ, Kuiper MJ, Braslavsky I, Davies PL. Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Biochemistry, 2010, 49: 9063-9071.

[74]

Garnham CP, Campbell RL, Davies PL. Anchored clathrate waters bind antifreeze proteins to ice. Proc Nati Acad Sci USA, 2011, 108: 7363-7367.

[75]

Garnham CP, Nishimiya Y, Tsuda S, Davies PL. Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice. FEBS Lett, 2012, 586: 3876-3881.

[76]

Gaukel V, Leiter A, Spieß WEL. Synergism of different fish antifreeze proteins and hydrocolloids on recrystallization inhibition of ice in sucrose solutions. J Food Eng, 2014, 141: 44-50.

[77]

Gauthier SY, Scotter AJ, Lin FH, Baardsnes J, Fletcher GL, Davies PL. A re-evaluation of the role of type IV antifreeze protein. Cryobiology, 2008, 57: 292-296.

[78]

Gibson MI. Slowing the growth of ice with synthetic macromolecules: Beyond antifreeze (glyco) proteins. Polym Chem, 2010, 1: 1141-1152.

[79]

Gilbert JA, Davies PL, Laybourn-Parry J. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett, 2005, 245: 67-72.

[80]

Goddard SV, Wroblewski JS, Taggart CT, Howse KA, Bailey WL, Kao MH, Fletcher GL. Overwintering of adult northern Atlantic cod (Gadus morhua) in cold inshore waters as evidenced by plasma Antifreeze glycoprotein Levels. Can J Fish Aquat Sci, 1994, 51: 2834-2842.

[81]

Goddard SV, Kao MH, Fletcher GL. Population differences in antifreeze production cycles of juvenile Atlantic cod (Gadus morhua) reflect adaptations to overwintering environment. Can J Fish Aquat Sci, 1999, 56: 1991-1999.

[82]

Goel R, Swanlund D, Coad J, Paciotti GF, Bischof JC. TNF-α-based accentuation in cryoinjury-Dose, delivery, and response. Mol Cancer Ther, 2007, 6: 2039-2047.

[83]

Goetz FW, McCauley L, Goetz GW, Norberg B. Using global genome approaches to address problems in cod mariculture. ICES J Mar Sci, 2006, 63: 393-399.

[84]

Gong Z, Ewart KV, Hu Z, Fletcher GL, Hew CL. Skin antifreeze protein genes of the winter flounder, Pleuronectes americanus, encode distinct and active polypeptides without the secretory signal and prosequences. J Biol Chem, 1996, 271: 4106-4112.

[85]

Gordon MS, Amdur BH, Scholander PF. Freezing resistance in some northern fishes. Biol Bull, 1962, 122: 52-62.

[86]

Graether SP, DeLuca CI, Baardsnes J, Hill GA, Davies PL, Jia Z. Quantitative and qualitative analysis of type III antifreeze protein structure and function. J Biol Chem, 1999, 274: 11842-11847.

[87]

Graether SP, Kuiper MJ, Gagné SM, Walker VK, Jia Z, Sykes BD, Davies PL. β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature, 2000, 406: 325-328.

[88]

Graham LA, Davies PL. Glycine-rich antifreeze proteins from snow fleas. Science, 2005, 310: 461.

[89]

Graham LA, Liou YC, Walker VK, Davies PL. Hyperactive antifreeze protein from beetles. Nature, 1997, 388: 727-728.

[90]

Graham LA, Lougheed SC, Ewart KV, Davies PL. Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS ONE, 2008, 3: 1-11.

[91]

Graham LA, Hobbs RS, Fletcher GL, Davies PL. Helical antifreeze proteins have independently evolved in fishes on four occasions. PLoS ONE, 2013, 8: 1-12.

[92]

Grandum S, Yabe A, Nakagomi K, Tanaka M, Takemura F, Kobayashi Y, Frivik PE. Analysis of ice crystal growth for a crystal surface containing adsorbed antifreeze proteins. J Cryst Growth, 1999, 205: 382-390.

[93]

Gronwald W, Chao H, Reddy DV, Davies PL, Sykes BD, Sönnichsen FD. NMR characterization of side chain flexibility and backbone structure in the type I antifreeze protein at near freezing temperatures. Biochem, 1996, 35: 16698-16704.

[94]

Gruneberg AK, Graham LA, Eves R, Agrawal P, Oleschuk RD, Davies PL. Ice recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis. Cryobiology, 2021, 99: 28-39.

[95]

Guo S, Garnham CP, Whitney JC, Graham LA, Davies PL. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity. PLoS ONE, 2012, 7: 1-10.

[96]

Gwak IG, Jung WS, Kim HJ, Kang SH, Jin ES. Antifreeze protein in Antarctic marine diatom, chaetoceros neogracile. J Mar Biotechnol, 2010, 12: 630-639.

[97]

Gwak Y, Jung W, Lee Y, Kim JS, Kim CG, Ju JH, Song C, Hyun JK, Jin E. An intracellular antifreeze protein from an Antarctic microalga that responds to various environmental stresses. FASEB J, 2014, 28: 4924-4935.

[98]

Hall-Manning T, Spurgeon M, Wolfreys AM, Baldrick AP. Safety evaluation of ice-structuring protein (ISP) type III HPLC 12 preparation. Lack of genotoxicity and subchronic toxicity. Food Chem Toxicol, 2004, 42: 321-333.

[99]

Hanada Y, Nishimiya Y, Miura A, Tsuda S, Kondo H. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. FEBS J, 2014, 281: 3576-3590.

[100]

Hashim NHF, Bharudin I, Nguong DLS, Higa S, Bakar FDA, Nathan S, Rabu A, Kawahara H, Illias RM, Najimudin N, Mahadi NM, Murad AMA. Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles, 2013, 17: 63-73.

[101]

Hashim NHF, Sulaiman S, Bakar FDA, Illias RM, Kawahara H, Najimudin N, Mahadi NM, Murad AMA. Molecular cloning, expression and characterisation of Afp4, an antifreeze protein from Glaciozyma antarctica. Polar Biol, 2014, 37: 1495-1505.

[102]

Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F. Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Biotechnol, 2016, 15: 147-172.

[103]

Hassas-Roudsari M, Goff HD. Ice structuring proteins from plants: mechanism of action and food application. Food Res Int, 2012, 46: 425-436.

[104]

Hays LM, Feeney RE, Crowe LM, Crowe JH, Oliver AE. Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. Proc Natl Acad Sci USA, 1996, 93: 6835-6840.

[105]

Hays LM, Crowe JH, Wolkers W, Rudenko S. Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions. Cryobiology, 2001, 42: 88-102.

[106]

Hew CL, Yang DSC. Protein interaction with ice. Eur J Biochem, 1992, 203: 33-42.

[107]

Hew CL, Slaughter D, Fletcher GL, Joshi SB. Antifreeze glycoproteins in the plasma of Newfoundland Atlantic cod (Gadus morhua). Can J Zool, 1981, 59: 2186-2192.

[108]

Hew CL, Joshi S, Wang NC. Analysis of fish antifreeze polypeptides by reversed-phase high-performance liquid chromatography. J Chromatogr A, 1984, 296: 213-219.

[109]

Hew CL, Joshi S, Wang NC, Kao MH, Ananthanarayanan VS. Structures of shorthorn sculpin antifreeze polypeptides. Eur j Biochem, 1985, 151: 167-172.

[110]

Hew CL, Wang NC, Joshi S, Fletcher GL, Scott GK, Hayes PH, Buettner B. Multiple genes provide the basis for antifreeze protein diversity and dosage in the ocean pout, Macrozoarces americanus. J Biol Chem, 1988, 263: 12049-12055.

[111]

Hincha DK, De Vries AL, Schmitt JM. Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes - comparison with cryotoxic sugar acids. Biochim Biophys Acta Biomembr, 1993, 1146: 258-264.

[112]

Hirano Y, Nishimiya Y, Matsumoto S, Matsushita M, Todo S, Miura A, Komatsu Y, Tsuda S. Hypothermic preservation effect on mammalian cells of type III antifreeze proteins from notched-fin eelpout. Cryobiology, 2008, 57: 46-51.

[113]

Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Yumoto I, Tsuda S. Antifreeze proteins from snow mold fungi. Can J Bot, 2003, 81: 1175-1181.

[114]

Ideta A, Aoyagi Y, Tsuchiya K, Nakamura Y, Hayama K, Shirasawa A, Sakaguchi K, Tominaga N, Nisimiya Y, Tsuda S. Prolonging hypothermic storage (4 C) of bovine embryos with fish antifreeze protein. J Reprod Dev, 2014, 61: 1-6.

[115]

Ikekawa S, Ishihara K, Tanaka S, Ikeda S. Basic studies of cryochemotherapy in a murine tumor syste. Cryobiology, 1985, 22: 477-483.

[116]

Inglis S, Turner J, Harding M. Applications of Type I Antifreeze proteins: studies with model membranes & cryoprotectant properties. Curr Protein Pept Sci, 2006, 7: 509-522.

[117]

Ishibe T, Congdon T, Stubbs C, Hasan M, Sosso GC, Gibson MI. Enhancement of macromolecular ice recrystallization inhibition activity by exploiting depletion forces. ACS Macro Lett, 2019, 8: 1063-1067.

[118]

Janech MG, Krell A, Mock T, Kang JS, Raymond JA. Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol, 2006, 42: 410-416.

[119]

Jung W, Gwak Y, Davies PL, Kim HJ, Jin ES. Isolation and characterization of antifreeze proteins from the Antarctic marine microalga pyramimonas gelidicola. J Mar Biotechnol, 2014, 16: 502-512.

[120]

Jung W, Campbell RL, Gwak Y, Kim JI, Davies PL, Jin ES. New cysteine-rich ice-binding protein secreted from antarctic microalga, chloromonas sp. PLoS ONE, 2016, 11: 1-26.

[121]

Kaleda A, Tsanev R, Klesment T, Vilu R, Laos K. Ice cream structure modification by ice-binding proteins. Food Chem, 2018, 246: 164-171.

[122]

Kamijima T, Sakashita M, Miura A, Nishimiya Y, Tsuda S. Antifreeze protein prolongs the life-time of insulinoma cells during hypothermic preservation. PLoS ONE, 2013, 8: 1-6.

[123]

Kang JS, Raymond JA. Reduction of freeze-thaw-induced hemolysis of red blood cells by an algal ice-binding protein. Cryo Lett, 2004, 25: 307-310.

[124]

Kao MH, Fletcher GL, Wang NC, Hew CL. The relationship between molecular weight and antifreeze polypeptide activity in marine fish. Can J Zool, 1986, 64: 578-582.

[125]

Kiko R. Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer?. Polar Biol, 2010, 33: 543-556.

[126]

Kim HJ, Lee JH, Do H, Jung W. Buzzini P, Margesin R. Production of antifreeze proteins by cold-adapted yeasts. Cold-adapted yeasts: Biodiversity, adaptation strategies and biotechnological significance, 2014, Berlin: Springer-Verlag, 259-280.

[127]

Kim HJ, Lee JH, Hur YB, Lee CW, Park SH, Koo BW. Marine antifreeze proteins: Structure, function, and application to cryopreservation as a potential cryoprotectant. Mar Drugs, 2017, 15: 1-27.

[128]

Knight CA. Adding to the antifreeze agenda. Nature, 2000, 406: 249-251.

[129]

Knight CA, Duman JG. Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology, 1986, 23: 256-262.

[130]

Knight CA, De Vries AL, Oolman LD. Fish antifreeze protein and the freezing and recrystallization of ice. Nature, 1984, 308: 295-296.

[131]

Knight CA, Hallett J, DeVries AL. Solute effects on ice recrystallization: an assessment technique. Cryobiology, 1988, 25: 55-60.

[132]

Knight CA, Cheng CC, DeVries AL. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys J, 1991, 59: 409-418.

[133]

Knight CA, Driggers E, DeVries AL. Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys J, 1993, 64: 252-259.

[134]

Knight CA, Wen D, Laursen RA. Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology, 1995, 32: 23-34.

[135]

Ko TP, Robinson H, Gao YG, Cheng CHC, DeVries AL, Wang AHJ. The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-Å resolution reveals structural microheterogeneity of protein and solvation. Biophys J, 2003, 84: 1228-1237.

[136]

Koh HY, Lee JH, Han SJ, Park H, Lee SG. Effect of the antifreeze protein from the Arctic Yeast Leucosporidium sp. AY30 on cryopreservation of the marine diatom phaeodactylum tricornutum. Appl Biochem Biotechnol, 2014, 175: 677-686.

[137]

Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S. Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proc Natl Acad Sci USA, 2012, 109: 9360-9365.

[138]

Kondo H, Mochizuki K, Bayer-Giraldi M. Multiple binding modes of a moderate ice-binding protein from a polar microalga. Phys Chem Chem Phys, 2018, 20: 25295-25303.

[139]

Koushafar H, Rubinsky B. Effect of antifreeze proteins on frozen primary prostatic adenocarcinoma cells. Urol J, 1997, 49: 421-425.

[140]

Koushafar H, Pham L, Lee C, Rubinsky B. Chemical adjuvant cryosurgery with antifreeze proteins. Surg Oncol, 1997, 66: 114-121.

[141]

Kraulis PJ. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr, 1991, 24: 947-950.

[142]

Krell A, Beszteri B, Dieckmann G, Glöckner G, Valentin K, Mock T. A new class of ice-binding proteins discovered in a salt-stress-induced cDNA library of the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). Eur J Phycol, 2008, 43: 423-433.

[143]

Kubota N. Effects of cooling rate, annealing time and biological antifreeze concentration on thermal hysteresis reading. Cryobiology, 2011, 63: 198-209.

[144]

Kuiper MJ, Lankin C, Gauthier SY, Walker VK, Davies PL. Purification of antifreeze proteins by adsorption to ice. Biochem Biophys Res Commun, 2003, 300: 645-648.

[145]

Kuiper MJ, Morton CJ, Abraham SE, Gray-Weale A. The biological function of an Insect antifreeze protein simulated by molecular dynamics. Elife, 2015, 4: e05142.

[146]

Kun H, Mastai Y. Isothermal calorimetry study of the interactions of type I Antifreeze proteins with a lipid model membrane. Protein Pept Lett, 2010, 17: 739-743.

[147]

Kun H, Byk G, Mastai Y. Effects of antifreeze protein fragments on the properties of model membranes. Adv Exp Med Biol, 2009, 611: 85-86.

[148]

Lagneaux D, Huhtinen M, Koskinen E, Palmer E. Effect of anti-freeze protein (AFP) on the cooling and freezing of equine embryos as measured by DAPI-staining. Equine Vet J, 1997, 25: 85-87.

[149]

Lee JK, Park KS, Park S, Park H, Song YW, Kang SH, Kim HJ. An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology, 2010, 60: 222-228.

[150]

Lee JK, Kim YJ, Park KS, Shin SC, Kim HJ, Song YH, Park H. Molecular and comparative analyses of type IV antifreeze proteins (AFPIVs) from two Antarctic fishes, Pleuragramma antarcticum and Notothenia coriiceps. Comp Biochem Physiol B Biochem Mol Biol, 2011, 159(4): 197-205.

[151]

Lee JH, Park AK, Do H, Park KS, Moh SH, Chi YM, Kim HJ. Structural basis for antifreeze activity of ice-binding protein from arctic yeast. J Biol Chem, 2012, 287: 11460-11468.

[152]

Lee HH, Lee HJ, Kim HJ, Lee JH, Ko Y, Kim SM, Lee JR, Suh CS, Kim SH. Effects of antifreeze proteins on the vitrification of mouse oocytes: comparison of three different antifreeze proteins. Hum Reprod, 2015, 30: 2110-2119.

[153]

Lee YH, Kim K, Lee JH, Kim HJ. Protection of alcohol dehydrogenase against freeze–thaw stress by ice-binding proteins is proportional to their ice recrystallization inhibition property. Mar Drugs, 2020, 18: 638.

[154]

Leinala EK, Davies PL, Doucet D, Tyshenko MG, Walker VK, Jia Z. A β-helical antifreeze protein isoform with increased activity: structural and functional insights. J Biol Chem, 2002, 277: 33349-33352.

[155]

Leygonie C, Britz TJ, Hoffman LC. Impact of freezing and thawing on the quality of meat: review. Meat Sci, 2012, 91: 93-98.

[156]

Li B, Sun DW. Novel methods for rapid freezing and thawing of foods - A review. J Food Eng, 2002, 54: 175-182.

[157]

Li X, Trinh KY, Hew CL. Expression and characterization of an active and thermally more stable recombinant antifreeze polypeptide from ocean pout, Macrozoarces americanus, in Escherichia coli improved expression by the modification of the secondary structure of the mRNA. Protein Eng Des Sel, 1991, 4: 995-1002.

[158]

Liou Y, Tocilj A, Davies PL, Jia Z. Mimicry of ice structure by surface hydroxyls and water of a beta-helix AFP. Nature, 2000, 406: 1998-2000.

[159]

Liu Y, Li Z, Lin Q, Kosinski J, Seetharaman J, Bujnicki JM, Sivaraman J, Hew CL. Structure and evolutionary origin of Ca2+ -dependent herring Type II antifreeze protein. PLoS ONE, 2007, 2: e548.

[160]

Liu JX, Zhai YH, Gui JF. Molecular characterization and expression pattern of AFPIV during embryogenesis in gibel carp (Carassiu auratus gibelio). Mol Biol Rep, 2009, 36: 2011-2018.

[161]

Logsdon JM, Doolittle WF. Origin of antifreeze protein genes: a cool tale in molecular evolution. Proc Natl Acad Sci USA, 1997, 94: 3485-3487.

[162]

Mangiagalli M, Bar-Dolev M, Tedesco P, Natalello A, Kaleda A, Brocca S, Pascale D, Pucciarelli S, Miceli C, Braslavsky I, Lotti M. Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria. FEBS J, 2017, 284: 163-177.

[163]

Mao MG, Chen Y, Liu RT, HQ, Gu J, Jiang ZQ, Jiang JL. Transcriptome from Pacific cod liver reveals types of apolipoproteins and expression analysis of AFP-IV, structural analogue with mammalian ApoA-I. Comp Biochem Phys D, 2018, 28: 204-212.

[164]

Marshall CB, Daley ME, Sykes BD, Davies PL. Enhancing the activity of a β-Helical antifreeze protein by the engineered addition of coils. Biochemistry, 2004, 43: 11637-11646.

[165]

Marshall CB, Chakrabartty A, Davies PL. Hyperactive antifreeze protein from winter flounder is a very long rod-like dimer of α-helices. J Biol Chem, 2005, 280: 17920-17929.

[166]

Marshall CJ, Basu K, Davies PL. Ice-shell purification of ice-binding proteins. Cryobiology, 2016, 72: 258-263.

[167]

Mastai Y, Rudloff J, Cölfen H, Antonietti M. Control over the structure of ice and water by block copolymer additives. ChemPhysChem, 2001, 1: 119-123.

[168]

Meister K, Ebbinghaus S, Xu Y, Duman JG, DeVries A, Gruebele M, Leitner DM, Havenith M. Long-range protein-water dynamics in hyperactive insect antifreeze proteins. Proc Natl Acad Sci USA, 2013, 110: 1617-1622.

[169]

Mir LM, Rubinsky B. Treatment of cancer with cryochemotherapy. Br J Cancer, 2002, 86: 1658-1660.

[170]

Modig K, Qvist J, Marshall CB, Davies PL, Halle B. High water mobility on the ice-binding surface of a hyperactive antifreeze protein. Phys Chem Chem Phys, 2010, 12: 10189-10197.

[171]

Mok Y, Lin F, Graham LA, Celik Y, Braslavsky I, Davies PL. Structural basis for the superior activity of the large isoform of snow flea antifreeze protein. Biochemistry, 2010, 49: 2593-2603.

[172]

Mugnano JA, Wang T, Layne JR, DeVries AL, Lee RE. Antifreeze glycoproteins promote intracellular freezing of rat cardiomyocytes at high subzero temperatures. Am J Physiol Regul Integr Comp Physiol, 1995, 269: 474-479.

[173]

Muldrew K, Rewcastle J, Donnelly BJ, Saliken JC, Liang S, Goldie S, Olson M, Baissalov R, Sandison G. Flounder antifreeze peptides increase the efficacy of cryosurgery. Cryobiology, 2001, 42: 182-189.

[174]

Nada H, Furukawa Y. Antifreeze proteins: Computer simulation studies on the mechanism of ice growth inhibition. Polym J, 2012, 44: 690-698.

[175]

Negulescu PA, Rubinsky B, Fletcher GL, Machen TE. Fish antifreeze proteins block Ca entry into rabbit parietal cells. Am J Physiol Cell Physiol, 1992, 263: 1-3.

[176]

Ng NF, Trinh KY, Hew CL. Structure of an antifreeze polypeptide precursor from the Sea raven, Hemitripterus americanus. J Biol Chem, 1986, 261: 15690-15695.

[177]

Nishimiya Y, Ohgiya S, Tsuda S. Artificial multimers of the type III antifreeze protein: effects on thermal hysteresis and ice crystal morphology. J Biol Chem, 2003, 278: 32307-32312.

[178]

Nishimiya Y, Sato R, Takamichi M, Miura A, Tsuda S. Co-operative effect of the isoforms of type III antifreeze protein expressed in Notched-fin eelpout, Zoarces elongatus Kner. FEBS J, 2005, 272: 482-492.

[179]

Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S. Crystal structure and mutational analysis of Ca2+-Independent Type II antifreeze protein from Longsnout Poacher, Brachyopsis rostratus. Mol Biol, 2008, 382: 734-746.

[180]

Nutt DR, Smith JC. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. J Am Chem Soc, 2008, 130: 13066-13073.

[181]

Olijve LL, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. Proc Natl Acad Sci, 2016, 113: 3740-3745.

[182]

Panadero J, Randez-Gil F, Prieto JA. Heterologous expression of type I antifreeze peptide GS-5 in baker’s yeast increases freeze tolerance and provides enhanced gas production in frozen dough. J Agric Food Chem, 2005, 53: 9966-9970.

[183]

Park KS, Do H, Lee JH, Park SI, Kim EJ, Kim SJ, Kang SH, Kim HJ. Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiology, 2012, 64: 286-296.

[184]

Payne SR, Young OA. Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality. Meat Sci, 1995, 41: 147-155.

[185]

Payne SR, Sandford D, Harris A, Young OA. The effects of antifreeze proteins on chilled and frozen meat. Meat Sci, 1994, 37: 429-438.

[186]

Pentelute BL, Gates ZP, Tereshko V, Dashnau JL, Vanderkooi JM, Kossiakoff AA, Kent SBH. X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers. J Am Chem Soc, 2008, 130: 9695-9701.

[187]

Pham L, Dahiya R, Rubinsky B. An in vivo study of antifreeze protein adjuvant cryosurgery. Cryobiology, 1999, 38: 169-175.

[188]

Pucciarelli S, Chiappori F, Devaraj RR, Yang G, Yu T, Ballarini P, Miceli C. Identification and analysis of two sequences encoding ice-binding proteins obtained from a putative bacterial symbiont of the psychrophilic Antarctic ciliate Euplotes focardii. Antarct Sci, 2014, 26: 491-501.

[189]

Qadeer S, Khana MA, Ansari MS, Rakhaa BA, Ejaz R, Husnaa AU, Ashiqc M, Iqbal R, Ullaha N, Akhter S. Evaluation of antifreeze protein III for cryopreservation of Nili-Ravi (Bubalus bubalis) buffalo bull sperm. Anim Reprod Sci, 2014, 148: 26-31.

[190]

Ramløv H, Johnsen JL (2014) Controlling the freezing process with antifreeze proteins. In: Emerging Technologies for Food Processing. Elsevier, London, p 539–561

[191]

Raymond JA, DeVries AL. Freezing behavior of fish blood glycoproteins with antifreeze properties. Cryobiology, 1972, 9: 541-547.

[192]

Raymond JA, DeVries AL. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Nati Acad Sci USA, 1977, 74: 2589-2593.

[193]

Raymond JA, Knight CA. Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology, 2003, 46: 174-181.

[194]

Raymond JA, Wilson PW, DeVries AL. Inhibition of growth on nonbasal planes in ice by fish antifreeze. Proc Natl Acad Sci USA, 1989, 86: 881-885.

[195]

Raymond JA, Fritsen C, Shen K. An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol, 2007, 61: 214-221.

[196]

Raymond JA, Christner BC, Schuster SC. A bacterial ice-binding protein from the Vostok ice core. Extremophiles, 2008, 12: 713-717.

[197]

Raymond JA, Janech MG, Fritsen CH. Novel ice-binding proteins from a psychrophilic antarctic alga (chlamydomonadaceae, chlorophyceae). J Phycol, 2009, 45: 130-136.

[198]

Regand A, Goff HD. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci, 2006, 89: 49-57.

[199]

Robles V, Barbosa V, Herráez MP, Martínez-Páramo S, Cancela ML. The antifreeze protein type I (AFP I) increases seabream (Sparus aurata) embryos tolerance to low temperatures. Theriogenology, 2007, 68: 284-289.

[200]

Robles V, Valcarce G, D, F Riesco M, . The use of antifreeze proteins in the cryopreservation of gametes and embryos. Biomolecules, 2019, 9: 181.

[201]

Rubinsky B. Cryosurgery. Annu Rev Biomed Eng, 2000, 2: 157-187.

[202]

Rubinsky B, Arav A, Mattioli M, Devries AL. The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures. Biochem Biophys Res Commun, 1990, 173: 1369-1374.

[203]

Rubinsky B, Arav A, Fletcher GL. Hypothermic protection—a fundamental property of “Antifreeze”proteins. Biochem Biophys Res Commun, 1991, 180: 566-571.

[204]

Rubinsky B, Arav A, Devries AL. The cryoprotective effect of antifreeze glycopeptides from antarctic fishes. Cryobiology, 1992, 29: 69-79.

[205]

Rubinsky B, Arav A, Hong JS, Lee CY. Freezing of mammalian livers with glycerol and antifreeze proteins. Biochem Biophys Res Commun, 1994, 200: 732-741.

[206]

Rubinsky L, Raichman N, Lavee J, Frenk H, Ben-Jacob E, Bickler PE. Antifreeze protein suppresses spontaneous neural activity and protects neurons from hypothermia/re-warming injury. J Neurosci Res, 2010, 67: 256-259.

[207]

Scholander PF, Kanwisker JW, Hammel HT, Gordon MS. Supercooling and osmoregulation in Arctic fish. J Cell Physiol, 1957, 49: 5-24.

[208]

Schrag JD, O'Grady SM, Devries AL. Relationship of amino acid composition and molecular weight of antifreeze glycopeptides to non-colligative freezing point depression. Biochim Biophys Acta, 1982, 717: 322-326.

[209]

Scott GK, Davies PL, Shears MA, Fletcher GL. Structural variations in the alanine-rich antifreeze proteins of the pleuronectinae. Eur J Biochem, 1987, 168: 629-633.

[210]

Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL. The basis for hyperactivity of antifreeze proteins. Cryobiology, 2006, 53: 229-239.

[211]

Shah SHH, Kar RK, Asmawi AA, Rahman MBA, Murad AMA, Mahadi NM, Basri M, Rahman RNZA, Salleh AB, Chatterjee S, Tejo BA, Bhunia A. Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an Antarctic yeast protein. PLoS ONE, 2012, 7: 1-16.

[212]

Sicheri F, Yang DSC. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature, 1995, 375: 427-431.

[213]

Singh P, Hanada Y, Singh SM, Tsuda S. Antifreeze protein activity in Arctic cryoconite bacteria. FEMS Microbiol Lett, 2014, 351: 14-22.

[214]

Smolin N, Daggett V. Formation of ice-like water structure on the surface of an antifreeze protein. J Phys Chem B, 2008, 112: 6193-6202.

[215]

Soltys KA, Batta AK, Koneru B. Successful nonfreezing, subzero preservation of rat liver with 2, 3-butanediol and type I antifreeze protein. J Surg Res, 2001, 96: 30-34.

[216]

Sönnichsen FD, Davies PL, Sykes BD. NMR structural studies on antifreeze proteins. Biochem Cell Biol, 1998, 76: 284-293.

[217]

Stevens CA, Zalis DR, S, Braslavsky I, Davies PL, . Dendrimer-linked antifreeze proteins have superior activity and thermal recovery. Bioconjug Chem, 2015, 26: 1908-1915.

[218]

Tablin F, Oliver AE, Walker NJ, Crowe LM, Crowe JH. Membrane phase transition of intact human platelets: Correlation with cold-induced activation. J Cell Physiol, 1996, 168: 305-313.

[219]

Takamichi M, Nishimiya Y, Miura A, Tsuda S. Effect of annealing time of an ice crystal on the activity of type III antifreeze protein. FEBS J, 2007, 274: 6469-6476.

[220]

Tomalty HE, Graham LA, Eves R, Gruneberg AK, Davies PL. Laboratory-scale isolation of insect antifreeze protein for cryobiology. Biomolecules, 2019, 9: 180.

[221]

Tomczak MM, Hincha DK, Estrada SD, Feeney RE, Crowe JH. Antifreeze proteins differentially affect model membranes during freezing. Biochim Biophys Acta Biomembr, 2001, 1511: 255-263.

[222]

Tomczak MM, Hincha DK, Estrada SD, Wolkers WF, Crowe LM, Feeney RE, Tablin F, Crowe JH. A mechanism for stabilization of membranes at low temperatures by an antifreeze protein. Biophys J, 2002, 82: 874-881.

[223]

Tomczak MM, Hincha DK, Crowe JH, Harding MM, Haymet ADJ. The effect of hydrophobic analogues of the type I winter flounder antifreeze protein on lipid bilayers. FEBS Lett, 2003, 551: 13-19.

[224]

Tseng PH, Jiaang WT, Chang MY, Chen ST. Facile solid-phase synthesis of an antifreeze glycoprotein. Chemistry, 2001, 7: 585-590.

[225]

Uhlig C, Kabisch J, Palm GJ, Valentin K, Schweder T, Krell A. Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae). Cryobiology, 2011, 63: 220-228.

[226]

Untersteiner N (1986) The geophysics of sea ice: overview. In: Untersteiner N (ed.) The Geophysics of Sea Ice. NATO ASI Series (Series B: Physics). Springer US, Boston, MA, p 1–8

[227]

Vance TDR, Graham LA, Davies PL. An ice binding and tandem beta-sandwich domain-containing protein in Shewanella frigidimarina is a potential new type of ice adhesin. FEBS J, 2018, 285: 1511-1527.

[228]

Venketesh S, Dayananda C. Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol, 2008, 28: 57-82.

[229]

Wang X, Devries AL, Cheng CC. Antifreeze peptide heterogeneity in an antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem. Biochim Biophys Acta-Protein Struct Mol Enzymol, 1995, 1247: 163-172.

[230]

Wang X, DeVries AL, Cheng CH. Genomic basis for antifreeze peptide heterogeneity and abundance in an antarctic eel pout—gene structures and organization. Mol Mar Biol Biotechnol, 1995, 4: 135-147.

[231]

Wang LH, Wusteman MC, Smallwood M, Pegg DE. The stability during low-temperature storage of an antifreeze protein isolated from the roots of cold-acclimated carrots. Cryobiology, 2002, 44: 307-310.

[232]

Wang CL, Teo KY, Han B. An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells. Cryobiology, 2008, 57: 52-59.

[233]

Wang C, Oliver EE, Christner BC, Luo BH. Functional analysis of a bacterial antifreeze protein indicates a cooperative effect between its two ice binding domains. Biochem, 2016, 55: 3975-3983.

[234]

Warren GJ, Mueller GM, McKown RL. Ice crystal growth suppression polypeptides and methods of making. USA Patent, 1992, 5(118): 792.

[235]

Wathen B, Jia Z. Sun D. Controlling the freezing process with antifreeze proteins. Emerg Technol Food Process, 2005, London: Elsevier, 653-674.

[236]

Wierzbicki A, Taylor MS, Knight CA, Madura JD, Harrington JP, Sikes CS. Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2–1 0) faces of ice. Biophys J, 1996, 71: 8-18.

[237]

Wilson PW, Beaglehole D, DeVries AL. Antifreeze glycopeptide adsorption on single crystal ice surfaces using ellipsometry. Biophys J, 1993, 64: 1878-1884.

[238]

Wilson PW, Gould M, DeVries AL. Hexagonal shaped ice spicules in frozen antifreeze protein solutions. Cryobiology, 2002, 44: 240-250.

[239]

Wilson SL, Kelley DL, Walker VK. Ice-active characteristics of soil bacteria selected by ice-affinity. Environ Microbiol, 2006, 8: 1816-1824.

[240]

Wu Y, Fletcher GL. Efficacy of antifreeze protein types in protecting liposome membrane integrity depends on phospholipid class. Biochim Biophys Acta Gen Subj, 2000, 1524: 11-16.

[241]

Wu Y, Banoub J, Goddard SV, Kao MH, Fletcher GL. Antifreeze glycoproteins: Relationship between molecular weight, thermal hysteresis and the inhibition of leakage from liposomes during thermotropic phase transition. Comp Biochem Physiol B Biochem Mol Biol, 2001, 128: 265-273.

[242]

Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J, 2010, 277: 394-403.

[243]

Xiao N, Hanada Y, Seki H, Kondo H, Tsuda S, Hoshino T. Annealing condition influences thermal hysteresis of fungal type ice-binding proteins. Cryobiology, 2014, 68: 159-161.

[244]

Yamashita Y, Miura R, Takemoto Y, Tsuda S, Kawahara H, Obata H. Type II antifreeze protein from a mid-latitude freshwater fish, Japanese smelt (Hypomesus nipponensis). Biosci Biotechnol Biochem, 2003, 67: 461-466.

[245]

Yang C, Sharp KA. The mechanism of the type III antifreeze protein action: a computational study. Biophys Chem, 2004, 109: 137-148.

[246]

Yang DS, Sax M, Chakrabartty A, Hew CL. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature, 1988, 333: 232-237.

[247]

Yang DSC, Hon WC, Bubanko S, Xue Y, Seetharaman J, Hew CL, Sicheri F. Identification of the ice-binding surface on a type III antifreeze protein with a “Flatness Function” algorithm. Biophys J, 1998, 74: 2142-2151.

[248]

Yasui M, Takamichi M, Miura A, Nishimiya Y, Kondo H, Tsuda S. Hydroxyl groups of threonines contribute to the activity of Ca2+-dependent type II antifreeze protein. Cryobiol Cryotech, 2008, 54: 1-8.

[249]

Yeh Y, Feeney RE. Antifreeze proteins: Structures and mechanisms of function. Chem Rev, 1996, 96: 601-618.

[250]

Younis Y, Gould G. The effects of antifreeze peptide III (AFP) and insulin transferrin selenium (ITS) on cryopreservation of chimpanzee (pan troglodytes) spermatozoa. J Androl, 1998, 19: 207-214.

[251]

Zhang C, Zhang H, Wang L. Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Res Int, 2007, 40: 763-769.

[252]

Zhang C, Zhang H, Wang L, Guo X. Effect of carrot (Daucus carota) antifreeze proteins on texture properties of frozen dough and volatile compounds of crumb. LWT-Food Sci Technol, 2008, 41: 1029-1036.

Funding

Fundação para a Ciência e a Tecnologia(SFRH/BD/149347/2019)

National funds from FCT/MEC(UID/QUI/50006/2019)

Portugal 2020 project Multibiorefinery(POCI-01 -145-FEDER-016403)

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/