Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories

Eric Fordjour , Emmanuel Osei Mensah , Yunpeng Hao , Yankun Yang , Xiuxia Liu , Ye Li , Chun-Li Liu , Zhonghu Bai

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 6

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 6 DOI: 10.1186/s40643-022-00493-8
Review

Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories

Author information +
History +
PDF

Abstract

Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceutical, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, designing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Metabolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic tools. This review sought to provide an in-depth description of novel strategies for improving cell factory performance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through chromosomal integration, metabolite tolerance, and modularization of pathways.

Keywords

Terpenoids / Protein engineering / Dynamic regulation / Promoter engineering / RBS engineering / Cellular tolerance / Chromosomal integration / Modular engineering

Cite this article

Download citation ▾
Eric Fordjour, Emmanuel Osei Mensah, Yunpeng Hao, Yankun Yang, Xiuxia Liu, Ye Li, Chun-Li Liu, Zhonghu Bai. Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. Bioresources and Bioprocessing, 2022, 9(1): 6 DOI:10.1186/s40643-022-00493-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdallah II, van Merkerk R, Klumpenaar E, Quax WJ. Catalysis of amorpha-4,11-diene synthase unraveled and improved by mutability landscape guided engineering. Sci Rep, 2018, 8(1): 9961.

[2]

Adams BG. Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J Bacteriol, 1972, 111(2): 308.

[3]

Ahmed MS, Ikram S, Rasool A, Li C. Design and construction of short synthetic terminators for β-amyrin production in Saccharomyces cerevisiae. Biochem Eng J, 2019, 146: 105-116.

[4]

Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000): 70-74.

[5]

Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol, 2015, 33(8): 831-838.

[6]

Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng, 2013, 19: 33-41.

[7]

Alonso-Gutierrez J, Koma D, Hu Q, Yang Y, Chan LJG, Petzold CJ, Adams PD, Vickers CE, Nielsen LK, Keasling JD, Lee TS. Toward industrial production of isoprenoids in Escherichia coli: lessons learned from CRISPR–Cas9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnol Bioeng, 2018, 115(4): 1000-1013.

[8]

Ankenbauer A, Schäfer RA, Viegas SC, Pobre V, Voß B, Arraiano CM, Takors R. Pseudomonas putida KT2440 is naturally endowed to withstand industrial-scale stress conditions. Microb Biotechnol, 2020, 13(4): 1145-1161.

[9]

Arendt P, Miettinen K, Pollier J, De Rycke R, Callewaert N, Goossens A. An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metab Eng, 2017, 40: 165-175.

[10]

Arvay E, Biggs BW, Guerrero L, Jiang V, Tyo K. Engineering Acinetobacter baylyi ADP1 for mevalonate production from lignin-derived aromatic compounds. Metab Eng Commun, 2021, 13: e00173.

[11]

Barrangou R, Marraffini LA. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell, 2014, 54(2): 234-244.

[12]

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712.

[13]

Bauer A, Minceva M. Techno-economic analysis of a new downstream process for the production of astaxanthin from the microalgae Haematococcus pluvialis. Bioresour Bioprocess, 2021, 8(1): 111.

[14]

Berger S, Lowe P, Tesar M. Fusion protein technologies for biopharmaceuticals: applications and challenges: Editor Stefan R Schmidt. Mabs, 2015, 7(3): 456-460.

[15]

Bian G, Ma T, Liu T. In vivo platforms for terpenoid overproduction and the generation of chemical diversity. Methods Enzymol, 2018, 608: 97-129.

[16]

Bian Q, Zhou P, Yao Z, Li M, Yu H, Ye L. Heterologous biosynthesis of lutein in S. cerevisiae enabled by temporospatial pathway control. Metab Eng, 2021, 67: 19-28.

[17]

Bienick MS, Young KW, Klesmith JR, Detwiler EE, Tomek KJ, Whitehead TA. The interrelationship between promoter strength, gene expression, and growth rate. PLoS ONE, 2014, 9(10): e109105.

[18]

Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR–Cas system. Nucleic Acids Res, 2013, 41(15): 7429-7437.

[19]

Brennan TC, Turner CD, Krömer JO, Nielsen LK. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng, 2012, 109(10): 2513-2522.

[20]

Bryant JA, Sellars LE, Busby SJ, Lee DJ. Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Res, 2014, 42(18): 11383-11392.

[21]

Bu X, Lin J-Y, Cheng J, Yang D, Duan C-Q, Koffas M, Yan G-L. Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of β-carotene in Saccharomyces cerevisiae. Biotechnol Biofuels, 2020, 13(1): 168.

[22]

Camagna M, Grundmann A, Bär C, Koschmieder J, Beyer P, Welsch R. Enzyme fusion removes competition for geranylgeranyl diphosphate in carotenogenesis. Plant Physiol, 2019, 179(3): 1013.

[23]

Cataldo VF, Arenas N, Salgado V, Camilo C, Ibáñez F, Agosin E. Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae. Metab Eng, 2020, 59: 53-63.

[24]

Chatzivasileiou AO, Ward V, Edgar SM, Stephanopoulos G. Two-step pathway for isoprenoid synthesis. Proc Natl Acad Sci USA, 2019, 116(2): 506-511.

[25]

Chaves JE, Rueda-Romero P, Kirst H, Melis A. Engineering isoprene synthase expression and activity in cyanobacteria. ACS Synth Biol, 2017, 6(12): 2281-2292.

[26]

Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J, 2011, 66(1): 212-229.

[27]

Chen B, Ling H, Chang MW. Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels, 2013, 6(1): 21.

[28]

Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev, 2013, 65(10): 1357-1369.

[29]

Chen H, Li M, Liu C, Zhang H, Xian M, Liu H. Enhancement of the catalytic activity of isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microb Cell Fact, 2018, 17(1): 65.

[30]

Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem Rev, 2018, 118(1): 4-72.

[31]

Chen F, Cheng H, Zhu J, Wang S, Zhang L, Dong H, Liu G, Chen H. Computer-aid directed evolution of GPPS and PS enzymes. BioMed Res Int, 2021, 2021: 6653500.

[32]

Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013, 31(3): 230-232.

[33]

Chou YL, Ko CY, Yen CC, Chen LO, Shaw JF. Multiple promoters driving the expression of astaxanthin biosynthesis genes can enhance free-form astaxanthin production. J Microbiol Methods, 2019, 160: 20-28.

[34]

Christianson DW. Structural biology and chemistry of the terpenoid cyclases. Chem Rev, 2006, 106(8): 3412-3442.

[35]

Clomburg JM, Qian S, Tan Z, Cheong S, Gonzalez R. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proc Natl Acad Sci USA, 2019, 116(26): 12810-12815.

[36]

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.

[37]

Cui S, Lv X, Wu Y, Li J, Du G, Ledesma-Amaro R, Liu L. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. ACS Synth Biol, 2019, 8(8): 1826-1837.

[38]

Culley C, Vijayakumar S, Zampieri G, Angione C. A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc Natl Acad Sci USA, 2020, 117(31): 18869-18879.

[39]

Dai Z, Pomraning KR, Panisko EA, Hofstad BA, Campbell KB, Kim J, Robles AL, Deng S, Magnuson JK. Genetically engineered oleaginous yeast Lipomyces starkeyi for sesquiterpene α-Zingiberene production. ACS Synth Biol, 2021, 10(5): 1000-1008.

[40]

Dale GE, Oefner C, D'Arcy A. The protein as a variable in protein crystallization. J Struct Biol, 2003, 142(1): 88-97.

[41]

David F, Siewers V. Advances in yeast genome engineering. FEMS Yeast Res, 2015, 15(1): 1-14.

[42]

Deng X, Shi B, Ye Z, Huang M, Chen R, Cai Y, Kuang Z, Sun X, Bian G, Deng Z, Liu T. Systematic identification of Ocimum sanctum sesquiterpenoid synthases and (−)-eremophilene overproduction in engineered yeast. Metab Eng, 2022, 69: 122-133.

[43]

Dietsch M, Behle A, Westhoff P, Axmann IM. Metabolic engineering of Synechocystis sp. PCC 6803 for the photoproduction of the sesquiterpene valencene. Metab Eng Commun, 2021, 13: e00178.

[44]

Ding N, Yuan Z, Zhang X, Chen J, Zhou S, Deng Y. Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor. Nucleic Acids Res, 2020, 48(18): 10602-10613.

[45]

Dong H, Chen S, Zhu J, Gao K, Zha W, Lin P, Zi J. Enhance production of diterpenoids in yeast by overexpression of the fused enzyme of ERG20 and its mutant mERG20. J Biotechnol, 2020, 307: 29-34.

[46]

Dong Y, Li X, Duan J, Qin Y, Yang X, Ren J, Li G. Improving the yield of xenocoumacin 1 enabled by in situ product removal. ACS Omega, 2020, 5(32): 20391-20398.

[47]

Duan Y, Liu J, Du Y, Pei X, Li M. Aspergillus oryzae biosynthetic platform for de novo iridoid production. J Agric Food Chem, 2021, 69(8): 2501-2511.

[48]

Dudley QM, Karim AS, Nash CJ, Jewett MC. In vitro prototyping of limonene biosynthesis using cell-free protein synthesis. Metab Eng, 2020, 61: 251-260.

[49]

Edgar S, Li FS, Qiao K, Weng JK, Stephanopoulos G. Engineering of taxadiene synthase for improved selectivity and yield of a key Taxol biosynthetic intermediate. ACS Synth Biol, 2017, 6(2): 201-205.

[50]

Eggeling L, Sahm H. New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch Microbiol, 2003, 180(3): 155-160.

[51]

Elleuche S. Bringing functions together with fusion enzymes—from nature’s inventions to biotechnological applications. Appl Microbiol Biotechnol, 2015, 99(4): 1545-1556.

[52]

Farmer WR, Liao JC. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol, 2000, 18(5): 533-537.

[53]

Fathi Z, Tramontin LRR, Ebrahimipour G, Borodina I, Darvishi F. Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates. FEMS Yeast Res, 2021, 21(1): foaa068.

[54]

Ferraz CA, Leferink NGH, Kosov I, Scrutton NS. Isopentenol utilization pathway for the production of linalool in Escherichia coli using an improved bacterial linalool/nerolidol synthase. ChemBioChem, 2021, 22(13): 2325-2334.

[55]

Fordjour E, Adipah FK, Zhou S, Du G, Zhou J. Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of l-DOPA from d-glucose. Microb Cell Fact, 2019, 18(1): 74.

[56]

Freeman A, Woodley JM, Lilly MD. In situ product removal as a tool for bioprocessing. Bio/technology, 1993, 11(9): 1007-1012.

[57]

Friehs K. Plasmid copy number and plasmid stability. Adv Biochem Eng Biotechnol, 2004, 86: 47-82.

[58]

Gao S, Tong Y, Zhu L, Ge M, Zhang Y, Chen D, Jiang Y, Yang S. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng, 2017, 41: 192-201.

[59]

Ge C, Sheng H, Chen X, Shen X, Sun X, Yan Y, Wang J, Yuan Q. Quorum sensing system used as a tool in metabolic engineering. Biotechnol J, 2020

[60]

Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol, 2007, 3(7): 408-414.

[61]

Göttl VL, Schmitt I, Braun K, Peters-Wendisch P, Wendisch VF, Henke NA. CRISPRi-library-guided target identification for engineering carotenoid production by Corynebacterium glutamicum. Microorganisms, 2021, 9(4): 670.

[62]

Gu P, Yang F, Su T, Wang Q, Liang Q, Qi Q. A rapid and reliable strategy for chromosomal integration of gene(s) with multiple copies. Sci Rep, 2015, 5(1): 9684.

[63]

Guo X, Sun J, Li D, Lu W. Heterologous biosynthesis of (+)-nootkatone in unconventional yeast Yarrowia lipolytica. Biochem Eng J, 2018, 137: 125-131.

[64]

Guzmán GI, Sandberg TE, LaCroix RA, Nyerges Á, Papp H, de Raad M, King ZA, Hefner Y, Northen TR, Notebaart RA, Pál C, Palsson BO, Papp B, Feist AM. Enzyme promiscuity shapes adaptation to novel growth substrates. Mol Syst Biol, 2019, 15(4): e8462.

[65]

Han L, Cui W, Suo F, Miao S, Hao W, Chen Q, Guo J, Liu Z, Zhou L, Zhou Z. Development of a novel strategy for robust synthetic bacterial promoters based on a stepwise evolution targeting the spacer region of the core promoter in Bacillus subtilis. Microb Cell Fact, 2019, 18(1): 96.

[66]

Harder BJ, Bettenbrock K, Klamt S. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnol Bioeng, 2018, 115(1): 156-164.

[67]

Hartline CJ, Schmitz AC, Han Y, Zhang F. Dynamic control in metabolic engineering: theories, tools, and applications. Metab Eng, 2021, 63: 126-140.

[68]

Hauk P, Stephens K, Virgile C, VanArsdale E, Pottash AE, Schardt JS, Jay SM, Sintim HO, Bentley WE. Homologous quorum sensing regulatory circuit: a dual-input genetic controller for modulating quorum sensing-mediated protein expression in E. coli. ACS Synth Biol, 2020, 9(10): 2692-2702.

[69]

Helalat SH, Jers C, Bebahani M, Mohabatkar H, Mijakovic I. Metabolic engineering of Deinococcus radiodurans for pinene production from glycerol. Microb Cell Fact, 2021, 20(1): 187.

[70]

Helmy M, Smith D, Selvarajoo K. Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metab Eng Commun, 2020, 11: e00149.

[71]

Henke NA, Wendisch VF. Improved astaxanthin production with Corynebacterium glutamicum by application of a membrane fusion protein. Mar Drugs, 2019, 17(11): 621.

[72]

Henke NA, Heider SAE, Peters-Wendisch P, Wendisch VF. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Mar Drugs, 2016, 14(7): 124.

[73]

Henke NA, Austermeier S, Grothaus IL, Götker S, Persicke M, Peters-Wendisch P, Wendisch VF. Corynebacterium glutamicum CrtR and its orthologs in actinobacteria: conserved function and application as genetically encoded biosensor for detection of geranylgeranyl pyrophosphate. Int J Mol Sci, 2020, 21(15): 5482.

[74]

Holtz WJ, Keasling JD. Engineering static and dynamic control of synthetic pathways. Cell, 2010, 140(1): 19-23.

[75]

Hong J, Park SH, Kim S, Kim SW, Hahn JS. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Appl Microbiol Biotechnol, 2019, 103(1): 211-223.

[76]

Hong B, Luo T, Lei X. Late-stage diversification of natural products. ACS Cent Sci, 2020, 6(5): 622-635.

[77]

Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962): 167-170.

[78]

Hu Y, Zhou YJ, Bao J, Huang L, Nielsen J, Krivoruchko A. Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene. J Ind Microbiol Biotechnol, 2017, 44(7): 1065-1072.

[79]

Hu T, Zhou J, Tong Y, Su P, Li X, Liu Y, Liu N, Wu X, Zhang Y, Wang J, Gao L, Tu L, Lu Y, Jiang Z, Zhou YJ, Gao W, Huang L. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metab Eng, 2020, 60: 87-96.

[80]

Hu Z, Lin L, Li H, Li P, Weng Y, Zhang C, Yu A, Xiao D. Engineering Saccharomyces cerevisiae for production of the valuable monoterpene d-limonene during Chinese Baijiu fermentation. J Ind Microbiol Biot, 2020

[81]

Huang Z-Y, Ye R-Y, Yu H-L, Li A-T, Xu J-H. Mining methods and typical structural mechanisms of terpene cyclases. Bioresour Bioprocess, 2021, 8(1): 66.

[82]

Huber T, Weisheit L, Magauer T. Synthesis of xenia diterpenoids and related metabolites isolated from marine organisms. Beilstein J Org Chem, 2015, 11: 2521-2539.

[83]

Igonina O, Samsonov V, Ublinskaya A, Hook C, Malykh E, Kozaeva E, Sycheva E, Stoynova N. A novel one-step method for targeted multiplication of DNA fragments from the Escherichia coli chromosome mediated by coordinated functioning of λ and φ80 bacteriophage recombination systems. J Microbiol Methods, 2020, 170: 105842.

[84]

Jakočiūnas T, Klitgaard AK, Kontou EE, Nielsen JB, Thomsen E, Romero-Suarez D, Blin K, Petzold CJ, Gin JW, Tong Y, Gotfredsen CH, Charusanti P, Frandsen RJN, Weber T, Lee SY, Jensen MK, Keasling JD. Programmable polyketide biosynthesis platform for production of aromatic compounds in yeast. Synth Syst Biotechnol, 2020, 5(1): 11-18.

[85]

Jeong Y, Kim J-N, Kim MW, Bucca G, Cho S, Yoon YJ, Kim B-G, Roe J-H, Kim SC, Smith CP, Cho B-K. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat Commun, 2016, 7(1): 11605.

[86]

Jervis AJ, Carbonell P, Vinaixa M, Dunstan MS, Hollywood KA, Robinson CJ, Rattray NJW, Yan C, Swainston N, Currin A, Sung R, Toogood H, Taylor S, Faulon J-L, Breitling R, Takano E, Scrutton NS. Machine learning of designed translational control allows predictive pathway optimization in Escherichia coli. ACS Synth Biol, 2019, 8(1): 127-136.

[87]

Jia H, Chen T, Qu J, Yao M, Xiao W, Wang Y, Li C, Yuan Y. Collaborative subcellular compartmentalization to improve GPP utilization and boost sabinene accumulation in Saccharomyces cerevisiae. Biochem Eng J, 2020, 164: 107768.

[88]

Jiang GZ, Yao MD, Wang Y, Zhou L, Song TQ, Liu H, Xiao WH, Yuan YJ. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae. Metab Eng, 2017, 41: 57-66.

[89]

Jiang G, Yang Z, Wang Y, Yao M, Chen Y, Xiao W, Yuan Y. Enhanced astaxanthin production in yeast via combined mutagenesis and evolution. Biochem Eng J, 2020, 156: 107519.

[90]

Jiang W, He X, Luo Y, Mu Y, Gu F, Liang Q, Qi Q. Two completely orthogonal quorum sensing systems with self-produced autoinducers enable automatic delayed cascade control. ACS Synth Biol, 2020

[91]

Jones CM, Hernández Lozada NJ, Pfleger BF. Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol, 2015, 99(22): 9381-9393.

[92]

Jullesson D, David F, Pfleger B, Nielsen J. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv, 2015, 33(7): 1395-1402.

[93]

Kang A, Meadows CW, Canu N, Keasling JD, Lee TS. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production. Metab Eng, 2017, 41: 125-134.

[94]

Karim AS, Curran KA, Alper HS. Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res, 2013, 13(1): 107-116.

[95]

Keeling CI, Bohlmann J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol, 2006, 170(4): 657-675.

[96]

Kent R, Dixon N. Contemporary tools for regulating gene expression in bacteria. Trends Biotechnol, 2020, 38(3): 316-333.

[97]

Ker DS, Chan KG, Othman R, Hassan M, Ng CL. Site-directed mutagenesis of β sesquiphellandrene synthase enhances enzyme promiscuity. Phytochemistry, 2020, 173: 112286.

[98]

Kiattisewee C, Dong C, Fontana J, Sugianto W, Peralta-Yahya P, Carothers JM, Zalatan JG. Portable bacterial CRISPR transcriptional activation enables metabolic engineering in Pseudomonas putida. Metab Eng, 2021, 66: 283-295.

[99]

Kildegaard KR, Arnesen JA, Adiego-Pérez B, Rago D, Kristensen M, Klitgaard AK, Hansen EH, Hansen J, Borodina I. Tailored biosynthesis of gibberellin plant hormones in yeast. Metab Eng, 2021, 66: 1-11.

[100]

Kim SK, Han GH, Seong W, Kim H, Kim S-W, Lee D-H, Lee S-G. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng, 2016, 38: 228-240.

[101]

Kim E-M, Woo HM, Tian T, Yilmaz S, Javidpour P, Keasling JD, Lee TS. Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli. Metab Eng, 2017, 44: 325-336.

[102]

Kim SK, Kim SH, Subhadra B, Woo SG, Rha E, Kim SW, Kim H, Lee DH, Lee SG. A genetically encoded biosensor for monitoring isoprene production in engineered Escherichia coli. ACS Synth Biol, 2018, 7(10): 2379-2390.

[103]

Kim JE, Jang IS, Son SH, Ko YJ, Cho BK, Kim SC, Lee JY. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metab Eng, 2019, 56: 50-59.

[104]

Kim SK, Yoon PK, Kim SJ, Woo SG, Rha E, Lee H, Yeom SJ, Kim H, Lee DH, Lee SG. CRISPR interference-mediated gene regulation in Pseudomonas putida KT2440. Microb Biotechnol, 2020, 13(1): 210-221.

[105]

Kokkonen P, Bednar D, Pinto G, Prokop Z, Damborsky J. Engineering enzyme access tunnels. Biotechnol Adv, 2019, 37(6): 107386.

[106]

Kosuri S, Goodman DB, Cambray G, Mutalik VK, Gao Y, Arkin AP, Endy D, Church GM. Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci USA, 2013, 110(34): 14024-14029.

[107]

Kumar J, Chauhan AS, Shah RL, Gupta JA, Rathore AS. Amino acid supplementation for enhancing recombinant protein production in E. coli. Biotechnol Bioeng, 2020, 117(8): 2420-2433.

[108]

Laane C, Boeren S, Vos K, Veeger C. Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng, 1987, 30(1): 81-87.

[109]

Lawson CE, Martí JM, Radivojevic T, Jonnalagadda SVR, Gentz R, Hillson NJ, Peisert S, Kim J, Simmons BA, Petzold CJ, Singer SW, Mukhopadhyay A, Tanjore D, Dunn JG, Garcia Martin H. Machine learning for metabolic engineering: a review. Metab Eng, 2021, 63: 34-60.

[110]

Lee J-W, Trinh CT. Microbial biosynthesis of lactate esters. Biotechnol Biofuels, 2019, 12(1): 226.

[111]

Leferink NGH, Ranaghan KE, Karuppiah V, Currin A, van der Kamp MW, Mulholland AJ, Scrutton NS. Experiment and simulation reveal how mutations in functional plasticity regions guide plant monoterpene synthase product outcome. ACS Catal, 2019, 8(5): 3780-3791.

[112]

Lei D, Qiu Z, Wu J, Qiao B, Qiao J, Zhao G-R. Combining metabolic and monoterpene synthase engineering for de novo production of monoterpene alcohols in Escherichia coli. ACS Synth Biol, 2021, 10(6): 1531-1544.

[113]

Lemuth K, Steuer K, Albermann C. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Fact, 2011, 10(1): 29.

[114]

Leonard E, Ajikumar PK, Thayer K, Xiao WH, Mo JD, Tidor B, Stephanopoulos G, Prather KL. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci USA, 2010, 107(31): 13654-13659.

[115]

Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang YJ, Chen T, Zhao X. Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab Eng, 2015, 31: 13-21.

[116]

Lin P-C, Zhang F, Pakrasi HB. Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering. Metab Eng Commun, 2021, 12: e00164.

[117]

Liu D, Evans T, Zhang F. Applications and advances of metabolite biosensors for metabolic engineering. Metab Eng, 2015, 31: 35-43.

[118]

Liu Y, Liu Y, Wang M. Design, optimization and application of small molecule biosensor in metabolic engineering. Front Microbiol, 2017, 8: 2012.

[119]

Liu D, Mao Z, Guo J, Wei L, Ma H, Tang Y, Chen T, Wang Z, Zhao X. Construction, model-based analysis, and characterization of a promoter library for fine-tuned gene expression in Bacillus subtilis. ACS Synth Biol, 2018, 7(7): 1785-1797.

[120]

Liu C, Bi H-R, Bai Z, Fan L-H, Tan T-W. Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production. Appl Microbiol Biotechnol, 2019, 103: 239-250.

[121]

Liu G-S, Li T, Zhou W, Jiang M, Tao X-Y, Liu M, Zhao M, Ren Y-H, Gao B, Wang F-Q, Wei D-Z. The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction. Metab Eng, 2020, 57: 151-161.

[122]

Liu H, Tian Y, Zhou Y, Kan Y, Wu T, Xiao W, Luo Y. Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside. Microb Biotechnol, 2020

[123]

Liu H, Wang F, Deng L, Xu P (2020c) Optimizing mevalonate pathway for squalene production in Yarrowia lipolytica. bioRxiv:2020.05.03.075259. https://doi.org/10.1101/2020.05.03.075259

[124]

Liu SC, Liu Z, Wei LJ, Hua Q. Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica. J Biotechnol, 2020, 319: 74-81.

[125]

Liu T, Dong C, Qi M, Zhang B, Huang L, Xu Z, Lian J. Construction of a stable and temperature-responsive yeast cell factory for crocetin biosynthesis using CRISPR–Cas9. Front Bioeng Biotechnol, 2020, 8: 653-653.

[126]

Liu H, Chen SL, Xu JZ, Zhang WG. Dual regulation of cytoplasm and peroxisomes for improved α-farnesene production in recombinant Pichia pastoris. ACS Synth Biol, 2021

[127]

Liu L, Qu YL, Dong GR, Wang J, Hu CY, Meng YH. Elevated β-carotene production using codon-adapted CarRA&B and metabolic balance in engineered Yarrowia lipolytica. Front Microbiol, 2021, 12: 627150.

[128]

Liu M, Zhang J, Ye J, Qi Q, Hou J. Morphological and metabolic engineering of Yarrowia lipolytica to increase β-carotene production. ACS Synth Biol, 2021

[129]

Liu Y, Wang Z, Cui Z, Qi Q, Hou J. α-Farnesene production from lipid by engineered Yarrowia lipolytica. Bioresour Bioprocess, 2021, 8(1): 78.

[130]

Lu Y, Yang Q, Lin Z, Yang X. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica. Microb Cell Fact, 2020, 19(1): 49.

[131]

Lu Z, Peng B, Ebert BE, Dumsday G, Vickers CE. Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast. Nat Commun, 2021, 12(1): 1051.

[132]

Lund S, Hall R, Williams GJ. An artificial pathway for isoprenoid biosynthesis decoupled from native hemiterpene metabolism. ACS Synth Biol, 2019, 8(2): 232-238.

[133]

Luo Z, Liu N, Lazar Z, Chatzivasileiou A, Ward V, Chen J, Zhou J, Stephanopoulos G. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity. Metab Eng, 2020, 61: 344-351.

[134]

Luo B, Jin MM, Li X, Makunga NP, Hu X. Yeast surface display for in vitro biosynthetic pathway reconstruction. ACS Synth Biol, 2021, 10(11): 2938-2946.

[135]

Lv X, Gu J, Wang F, Xie W, Liu M, Ye L, Yu H. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering. Biotechnol Bioeng, 2016, 113(12): 2661-2669.

[136]

Lv X, Wang F, Zhou P, Ye L, Xie W, Xu H, Yu H. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nat Commun, 2016, 7(1): 12851.

[137]

Lv PJ, Qiang S, Liu L, Hu CY, Meng YH. Dissolved-oxygen feedback control fermentation for enhancing β-carotene in engineered Yarrowia lipolytica. Sci Rep, 2020, 10(1): 17114.

[138]

Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA, 2015, 112(10): 3002-3007.

[139]

Ma Y, Li J, Huang S, Stephanopoulos G. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica. Metab Eng, 2021, 68: 152-161.

[140]

Marsafari M, Xu P. Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica. Metab Eng Commun, 2020, 10: e00121.

[141]

Martínez JM, Delso C, Angulo J, Álvarez I, Raso J. Pulsed electric field-assisted extraction of carotenoids from fresh biomass of Rhodotorula glutinis. Innov Food Sci Emerg Technol, 2018, 47: 421-427.

[142]

Martínez JM, Schottroff F, Haas K, Fauster T, Sajfrtová M, Álvarez I, Raso J, Jaeger H. Evaluation of pulsed electric fields technology for the improvement of subsequent carotenoid extraction from dried Rhodotorula glutinis yeast. Food Chem, 2020, 323: 126824.

[143]

Mazurenko S, Prokop Z, Damborsky J. Machine learning in enzyme engineering. ACS Catal, 2020, 10(2): 1210-1223.

[144]

McClelland RA (2008) Carbocations. In: Organic reaction mechanisms. 2005. pp 179–211

[145]

McGarvey DJ, Croteau R. Terpenoid metabolism. Plant Cell, 1995, 7(7): 1015-1026.

[146]

McGinn J, Marraffini LA. CRISPR-Cas systems optimize their immune response by specifying the site of spacer integration. Mol Cell, 2016, 64(3): 616-623.

[147]

McManus CJ, May GE, Spealman P, Shteyman A. Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast. Genome Res, 2014, 24(3): 422-430.

[148]

Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Microb Cell Fact, 2016, 15(1): 141.

[149]

Meng H, Ma Y, Mai G, Wang Y, Liu C. Construction of precise support vector machine based models for predicting promoter strength. Quant Biol, 2017, 5(1): 90-98.

[150]

Meng X, Liu H, Xu W, Zhang W, Wang Z, Liu W. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone. Microb Cell Fact, 2020, 19(1): 21.

[151]

Meng Y, Shao X, Wang Y, Li Y, Zheng X, Wei G, Kim S-W, Wang C. Extension of cell membrane boosting squalene production in the engineered Escherichia coli. Biotechnol Bioeng, 2020, 117(11): 3499-3507.

[152]

Menin B, Lami A, Musazzi S, Petrova AA, Santabarbara S, Casazza AP. A comparison of constitutive and inducible non-endogenous keto-carotenoids biosynthesis in Synechocystis sp. PCC 6803. Microorganisms, 2019, 7(11): 501.

[153]

Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol, 2007, 25(7): 778-785.

[154]

Mishra S, Pandey P, Dubey AP, Zehra A, Chanotiya CS, Tripathi AK, Mishra MN. Engineering a carotenoid-overproducing strain of Azospirillum brasilense for heterologous production of geraniol and amorphadiene. Appl Environ Microbiol, 2020, 86(17): e0414-20.

[155]

Mo XH, Zhang H, Wang TM, Zhang C, Zhang C, Xing XH, Yang S. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis. Appl Microbiol Biotechnol, 2020, 104(10): 4515-4532.

[156]

Moon JH, Lee K, Lee JH, Lee PC. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli. Microb Cell Fact, 2020, 19(1): 20.

[157]

Mordaka PM, Heap JT. Stringency of synthetic promoter sequences in Clostridium revealed and circumvented by tuning promoter library mutation rates. ACS Synth Biol, 2018, 7(2): 672-681.

[158]

Motoyama K, Sobue F, Kawaide H, Yoshimura T, Hemmi H. Conversion of mevalonate 3-kinase into 5-phosphomevalonate 3-kinase by single amino acid mutations. Appl Environ Microbiol, 2019, 85(9): e00256-19.

[159]

Mowbray M, Savage T, Wu C, Song Z, Cho BA, Del Rio-Chanona EA, Zhang D. Machine learning for biochemical engineering: a review. Biochem Eng J, 2021, 172: 108054.

[160]

Navale G, Sharma P, Said M, Ramkumar S, Dharne M, Thulasiram HV, Shinde S. Enhancing epi -cedrol production in Escherichia coli by fusion expression of farnesyl pyrophosphate synthase and e pi -cedrol synthase. Eng Life Sci, 2019

[161]

Nicolaou SA, Gaida SM, Papoutsakis ET. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng, 2010, 12(4): 307-331.

[162]

Nielsen J, Keasling JD. Engineering cellular metabolism. Cell, 2016, 164(6): 1185-1197.

[163]

Nitta N, Tajima Y, Yamamoto Y, Moriya M, Matsudaira A, Hoshino Y, Nishio Y, Usuda Y. Fermentative production of enantiopure (S)-linalool using a metabolically engineered Pantoea ananatis. Microb Cell Fact, 2021, 20(1): 54.

[164]

Niu F-X, He X, Wu Y-Q, Liu J-Z. Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering. Front Microbiol, 2018, 9: 1623-1623.

[165]

Nobeli I, Favia AD, Thornton JM. Protein promiscuity and its implications for biotechnology. Nat Biotechnol, 2009, 27(2): 157-167.

[166]

Nogueira M, Enfissi EMA, Welsch R, Beyer P, Zurbriggen MD, Fraser PD. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: a new tool for engineering ketocarotenoids. Metab Eng, 2019, 52: 243-252.

[167]

Nora LC, Wehrs M, Kim J, Cheng JF, Tarver A, Simmons BA, Magnuson J, Harmon-Smith M, Silva-Rocha R, Gladden JM, Mukhopadhyay A, Skerker JM, Kirby J. A toolset of constitutive promoters for metabolic engineering of Rhodosporidium toruloides. Microb Cell Fact, 2019, 18(1): 117.

[168]

Nowroozi FF, Baidoo EE, Ermakov S, Redding-Johanson AM, Batth TS, Petzold CJ, Keasling JD. Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Microbiol Biotechnol, 2014, 98(4): 1567-1581.

[169]

Otto M, Teixeira PG, Vizcaino MI, David F, Siewers V. Integration of a multi-step heterologous pathway in Saccharomyces cerevisiae for the production of abscisic acid. Microb Cell Fact, 2019, 18(1): 205.

[170]

Ou B, Garcia C, Wang Y, Zhang W, Zhu G. Techniques for chromosomal integration and expression optimization in Escherichia coli. Biotechnol Bioeng, 2018, 115(10): 2467-2478.

[171]

Page K, Shaffer J, Lin S, Zhang M, Liu JM. Engineering riboswitches in vivo using dual genetic selection and fluorescence-activated cell sorting. ACS Synth Biol, 2018, 7(9): 2000-2006.

[172]

Pan X, Wang B, Duan R, Jia J, Li J, Xiong W, Ling X, Chen C, Huang X, Zhang G, Lu Y. Enhancing astaxanthin accumulation in Xanthophyllomyces dendrorhous by a phytohormone: metabolomic and gene expression profiles. Microb Biotechnol, 2020, 13(5): 1446-1460.

[173]

Pang B, Li J, Eiben CB, Oksen E, Barcelos C, Chen R, Englund E, Sundstrom E, Keasling JD. Lepidopteran mevalonate pathway optimization in Escherichia coli efficiently produces isoprenol analogs for next-generation biofuels. Metab Eng, 2021, 68: 210-219.

[174]

Papenfort K, Bassler BL. Quorum sensing signal–response systems in gram-negative bacteria. Nat Rev Microbiol, 2016, 14(9): 576-588.

[175]

Park J, Yu BJ, Choi J-i, Woo HM. Heterologous production of squalene from glucose in engineered Corynebacterium glutamicum using multiplex CRISPR interference and high-throughput fermentation. J Agric Food Chem, 2019, 67(1): 308-319.

[176]

Peng B, Plan MR, Chrysanthopoulos P, Hodson MP, Nielsen LK, Vickers CE. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metab Eng, 2017, 39: 209-219.

[177]

Peng B, Nielsen LK, Kampranis SC, Vickers CE. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metab Eng, 2018, 47: 83-93.

[178]

Peters RJ, Flory JE, Jetter R, Ravn MM, Lee HJ, Coates RM, Croteau RB. Abietadiene synthase from grand fir (Abies grandis): characterization and mechanism of action of the “pseudomature” recombinant enzyme. Biochemistry, 2000, 39(50): 15592-15602.

[179]

Pfleger BF, Prather KL. Biological synthesis unbounded?. Nat Biotechnol, 2015, 33(11): 1148-1149.

[180]

Pramastya H, Xue D, Abdallah II, Setroikromo R, Quax WJ. High level production of amorphadiene using Bacillus subtilis as an optimized terpenoid cell factory. New Biotechnol, 2021, 60: 159-167.

[181]

Putman M, van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev, 2000, 64(4): 672-693.

[182]

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183.

[183]

Qian S, Li Y, Cirino PC. Biosensor-guided improvements in salicylate production by recombinant Escherichia coli. Microb Cell Fact, 2019, 18(1): 18.

[184]

Qin J, Zhou Y, Krivoruchko A, Huang M, Liu L, Khoomrung S, Siewers V, Jiang B, Nielsen J. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine. Nat Commun, 2015, 8: 8224.

[185]

Rabeharindranto H, Castaño-Cerezo S, Lautier T, Garcia-Alles LF, Treitz C, Tholey A, Truan G. Enzyme-fusion strategies for redirecting and improving carotenoid synthesis in S. cerevisiae. Metab Eng Commun, 2019, 8: e00086.

[186]

Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A. Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol, 2002, 56: 743-768.

[187]

Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A. Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev, 2015, 39(4): 555-566.

[188]

Ravn MM, Coates RM, Flory JE, Peters RJ, Croteau R. Stereochemistry of the cyclization-rearrangement of (+)-copalyl diphosphate to (-)-abietadiene catalyzed by recombinant abietadiene synthase from Abies grandis. Org Lett, 2000, 2(5): 573-576.

[189]

Raz K, Driller R, Dimos N, Ringel M, Brück T, Loll B, Major DT. The impression of a nonexisting catalytic effect: the role of CotB2 in guiding the complex biosynthesis of cyclooctat-9-en-7-ol. J Am Chem Soc, 2020, 142(51): 21562-21574.

[190]

Redden H, Alper HS. The development and characterization of synthetic minimal yeast promoters. Nat Commun, 2015, 6(1): 7810.

[191]

Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol, 2012, 30(5): 460-465.

[192]

Rodrigues JS, Lindberg P. Metabolic engineering of Synechocystis sp. PCC 6803 for improved bisabolene production. Metab Eng Commun, 2021, 12: e00159.

[193]

Rolf J, Julsing MK, Rosenthal K, Lütz S. A gram-scale limonene production process with engineered Escherichia coli. Molecules, 2020, 25(8): 1881.

[194]

Saini RK, Keum Y-S. Carotenoid extraction methods: a review of recent developments. Food Chem, 2018, 240: 90-103.

[195]

Salas-Villalobos U, Gómez-Acata R, Castillo J, Aguilar O. In-situ product recovery as a strategy for bioprocess integration and depletion of inhibitory products. J Chem Techn Biotechnol, 2021

[196]

Salmon M, Laurendon C, Vardakou M, Cheema J, Defernez M, Green S, Faraldos JA, O'Maille PE. Emergence of terpene cyclization in Artemisia annua. Nat Commun, 2015, 6: 6143.

[197]

Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods, 2011, 8(1): 67-69.

[198]

Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F. A transcription activator-like effector toolbox for genome engineering. Nat Protoc, 2012, 7(1): 171-192.

[199]

Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquiterpene α-santalene in a fed-batch mode. Metab Eng, 2012, 14(2): 91-103.

[200]

Schalck T, Bergh BVd, Michiels J. Increasing solvent tolerance to improve microbial production of alcohols, terpenoids and aromatics. Microorganisms, 2021, 9(2): 249.

[201]

Schewe H, Mirata MA, Schrader J. Bioprocess engineering for microbial synthesis and conversion of isoprenoids. Adv Biochem Eng Biotechnol, 2015, 148: 251-286.

[202]

Schultenkämper K, Brito LF, Wendisch VF. Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem, 2020, 67(1): 7-21.

[203]

Schuster M, Sexton DJ, Diggle SP, Greenberg EP. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol, 2013, 67: 43-63.

[204]

Sengupta A, Sunder AV, Sohoni SV, Wangikar PP. Fine-tuning native promoters of Synechococcus elongatus PCC 7942 to develop a synthetic toolbox for heterologous protein expression. ACS Synth Biol, 2019, 8(5): 1219-1223.

[205]

Shaikh KM, Odaneth AA. Metabolic engineering of Yarrowia lipolytica for the production of isoprene. Biotechnol Prog, 2021

[206]

Sharma AK, Shukla E, Janoti DS, Mukherjee KJ, Shiloach J. A novel knock out strategy to enhance recombinant protein expression in Escherichia coli. Microb Cell Fact, 2020, 19(1): 148-148.

[207]

Shen H-J, Cheng B-Y, Zhang Y-M, Tang L, Li Z, Bu Y-F, Li X-R, Tian G-Q, Liu J-Z. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis. Metab Eng, 2016, 38: 180-190.

[208]

Shi S, Liang Y, Zhang MM, Ang EL, Zhao H. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng, 2016, 33: 19-27.

[209]

Shi B, Ma T, Ye Z, Li X, Huang Y, Zhou Z, Ding Y, Deng Z, Liu T. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction. J Agric Food Chem, 2019, 67(40): 11148-11157.

[210]

Shi T, Li Y, Zhu L, Tong Y, Yang J, Fang Y, Wang M, Zhang J, Jiang Y, Yang S. Engineering the oleaginous yeast Yarrowia lipolytica for β-farnesene overproduction. Biotechnol J, 2021, 16(7): 2100097.

[211]

Shi Y, Wang D, Li R, Huang L, Dai Z, Zhang X. Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides. Metab Eng, 2021, 67: 104-111.

[212]

Shukal S, Chen X, Zhang C. Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichiacoli. Metab Eng, 2019, 55: 170-178.

[213]

Silva PGPd, Prescendo Júnior D, Sala L, Burkert JFdM, Santos LO. Magnetic field as a trigger of carotenoid production by Phaffia rhodozyma. Process Biochem, 2020, 98: 131-138.

[214]

Singh N, Malik S, Gupta A, Srivastava KR. Revolutionizing enzyme engineering through artificial intelligence and machine learning. Emerg Top Life Sci, 2021, 5(1): 113-125.

[215]

Sivy T, Fall R, Rosenstiel T. Evidence of isoprenoid precursor toxicity in Bacillus subtilis. Biosci Biotechnol Biochem, 2011, 75: 2376-2383.

[216]

Smanski MJ, Bhatia S, Zhao D, Park Y, Woodruff LBA, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, Gordon DB, Densmore D, Voigt CA. Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol, 2014, 32(12): 1241-1249.

[217]

Song X, Xiao H, Luo S, Wang X, Wang W, Lin S. Biosynthesis of squalene-type triterpenoids in Saccharomyces cerevisiae by expression of CYP505D13 from Ganoderma lucidum. Bioresour Bioprocess, 2019, 6(1): 19.

[218]

Song Y, He S, Abdallah II, Jopkiewicz A, Setroikromo R, van Merkerk R, Tepper PG, Quax WJ. Engineering of multiple modules to improve amorphadiene production in Bacillus subtilis using CRISPR–Cas9. J Agric Food Chem, 2021, 69(16): 4785-4794.

[219]

Storici F, Durham CL, Gordenin DA, Resnick MA. Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci USA, 2003, 100(25): 14994-14999.

[220]

St-Pierre F, Cui L, Priest DG, Endy D, Dodd IB, Shearwin KE. One-step cloning and chromosomal integration of DNA. ACS Synth Biol, 2013, 2(9): 537-541.

[221]

Su B, Song D, Yang F, Zhu H. Engineering a growth-phase-dependent biosynthetic pathway for carotenoid production in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol, 2020, 47(4–5): 383-393.

[222]

Takemura M, Kubo A, Higuchi Y, Maoka T, Sahara T, Yaoi K, Ohdan K, Umeno D, Misawa N. Pathway engineering for efficient biosynthesis of violaxanthin in Escherichia coli. Appl Microbiol Biotechnol, 2019, 103(23): 9393-9399.

[223]

Tang W-Y, Wang D-P, Tian Y, Fan X, Wang C, Lu X-Y, Li P-W, Ji X-J, Liu H-H. Metabolic engineering of Yarrowia lipolytica for improving squalene production. Bioresour Technol, 2021, 323: 124652.

[224]

Tantillo DJ. The carbocation continuum in terpene biosynthesis—where are the secondary cations?. Chem Soc Rev, 2010, 39(8): 2847-2854.

[225]

Tantillo DJ. Importance of inherent substrate reactivity in enzyme-promoted carbocation cyclization/rearrangements. Angew Chem Int Ed, 2017, 56(34): 10040-10045.

[226]

Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol, 2003, 60(5): 523-533.

[227]

Tetali SD. Terpenes and isoprenoids: a wealth of compounds for global use. Planta, 2019, 249(1): 1-8.

[228]

Tholl D. Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol, 2015, 148: 63-106.

[229]

Tian T, Kang JW, Kang A, Lee TS. Redirecting metabolic flux via combinatorial multiplex CRISPRi-mediated repression for isopentenol production in Escherichia coli. ACS Synth Biol, 2019, 8(2): 391-402.

[230]

Tovilla-Coutiño DB, Momany C, Eiteman MA. Engineered citrate synthase alters acetate accumulation in Escherichia coli. Metab Eng, 2020

[231]

Tyo KE, Ajikumar PK, Stephanopoulos G. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol, 2009, 27(8): 760-765.

[232]

Uhlen M, Forsberg G, Moks T, Hartmanis M, Nilsson B. Fusion proteins in biotechnology. Curr Opin Biotechnol, 1992, 3(4): 363-369.

[233]

Walls LE, Malcı K, Nowrouzi B, Li RA, d'Espaux L, Wong J, Dennis JA, Semião AJC, Wallace S, Martinez JL, Keasling JD, Rios-Solis L. Optimizing the biosynthesis of oxygenated and acetylated Taxol precursors in Saccharomyces cerevisiae using advanced bioprocessing strategies. Biotechnol Bioeng, 2020

[234]

Wang JF, Xiong ZQ, Li SY, Wang Y. Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli. Appl Microbiol Biotechnol, 2013, 97(18): 8057-8067.

[235]

Wang C, Yang L, Shah AA, Choi E-S, Kim S-W. Dynamic interplay of multidrug transporters with TolC for isoprenol tolerance in Escherichia coli. Sci Rep, 2015, 5(1): 16505.

[236]

Wang J, Niyompanich S, Tai YS, Wang J, Bai W, Mahida P, Gao T, Zhang K. Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration. Appl Environ Microb, 2016, 82(24): 7176-7184.

[237]

Wang F, Lv X, Xie W, Zhou P, Zhu Y, Yao Z, Yang C, Yang X, Ye L, Yu H. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Metab Eng, 2017, 39: 257-266.

[238]

Wang J, Jiang W, Liang C, Zhu L, Li Y, Mo Q, Xu S, Chu A, Zhang L, Ding Z, Shi G. Overproduction of α-farnesene in Saccharomyces cerevisiae by farnesene synthase screening and metabolic engineering. J Agric Food Chem, 2021, 69(10): 3103-3113.

[239]

Wang J, Zhu L, Li Y, Xu S, Jiang W, Liang C, Fang Y, Chu A, Zhang L, Ding Z, Shi G. Enhancing geranylgeraniol production by metabolic engineering and utilization of isoprenol as a substrate in Saccharomyces cerevisiae. J Agric Food Chem, 2021, 69(15): 4480-4489.

[240]

Wang X, Chen J, Zhang J, Zhou Y, Zhang Y, Wang F, Li X. Engineering Escherichia coli for production of geraniol by systematic synthetic biology approaches and laboratory-evolved fusion tags. Metab Eng, 2021, 66: 60-67.

[241]

Wang X, Pereira JH, Tsutakawa S, Fang X, Adams PD, Mukhopadhyay A, Lee TS. Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450. Metab Eng, 2021, 64: 41-51.

[242]

Wang Y, Zhou S, Liu Q, Jeong S-H, Zhu L, Yu X, Zheng X, Wei G, Kim S-W, Wang C. Metabolic engineering of Escherichia coli for production of α-santalene, a precursor of sandalwood oil. J Agric Food Chem, 2021, 69(44): 13135-13142.

[243]

Ward VCA, Chatzivasileiou AO, Stephanopoulos G. Metabolic engineering of Escherichia coli for the production of isoprenoids. FEMS Microbiol Lett, 2018, 365(10): fny079.

[244]

Ward VCA, Chatzivasileiou AO, Stephanopoulos G. Cell free biosynthesis of isoprenoids from isopentenol. Biotechnol Bioeng, 2019, 116(12): 3269-3281.

[245]

Watcharawipas A, Sansatchanon K, Phithakrotchanakoon C, Tanapongpipat S, Runguphan W, Kocharin K. Novel carotenogenic gene combinations from red yeasts enhanced lycopene and beta-carotene production in Saccharomyces cerevisiae from the low-cost substrate sucrose. FEMS Yeast Res, 2021

[246]

Wei L, Xu N, Wang Y, Zhou W, Han G, Ma Y, Liu J. Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2018, 102(9): 4117-4130.

[247]

Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ. Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 333(6040): 307.

[248]

Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol, 2016, 34(8): 652-664.

[249]

Wu T, Ye L, Zhao D, Li S, Li Q, Zhang B, Bi C, Zhang X. Membrane engineering—a novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metab Eng, 2017, 43(Pt A): 85-91.

[250]

Wu T, Ye L, Zhao D, Li S, Li Q, Zhang B, Bi C. Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories. 3 Biotech, 2018, 8(6): 269-269.

[251]

Wu T, Li S, Ye L, Zhao D, Fan F, Li Q, Zhang B, Bi C, Zhang X. Engineering an artificial membrane vesicle trafficking system (AMVTS) for the excretion of β-carotene in Escherichia coli. ACS Synth Biol, 2019, 8(5): 1037-1046.

[252]

Wu T, Liu J, Li M, Zhang G, Liu L, Li X, Men X, Xian M, Zhang H. Improvement of sabinene tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. Biotechnol Biofuels, 2020, 13(1): 79.

[253]

Wu Y, Yan P, Li Y, Liu X, Wang Z, Chen T, Zhao X. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply. Front Bioeng Biotechnol, 2020, 8: 585-585.

[254]

Wu X, Ma G, Liu C, Qiu XY, Min L, Kuang J, Zhu L. Biosynthesis of pinene in purple non-sulfur photosynthetic bacteria. Microb Cell Fact, 2021, 20(1): 101.

[255]

Xie W, Lv X, Ye L, Zhou P, Yu H. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng, 2015, 30: 69-78.

[256]

Xiong M, Schneiderman DK, Bates FS, Hillmyer MA, Zhang K. Scalable production of mechanically tunable block polymers from sugar. Proc Natl Acad Sci USA, 2014, 111(23): 8357-8362.

[257]

Xu X, Li X, Liu Y, Zhu Y, Li J, Du G, Chen J, Ledesma-Amaro R, Liu L. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nat Chem Biol, 2020, 16(11): 1261-1268.

[258]

Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G. The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng, 2012, 14(3): 233-241.

[259]

Yamada Y, Kuzuyama T, Komatsu M, Shin-Ya K, Omura S, Cane DE, Ikeda H. Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci USA, 2015, 112(3): 857-862.

[260]

Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolution for protein engineering. Nat Methods, 2019, 16(8): 687-694.

[261]

Yang D, Park SY, Lee SY. Production of rainbow colorants by metabolically engineered Escherichia coli. Adv Sci, 2021

[262]

Yazdani M, Croen MG, Fish TL, Thannhauser TW, Ahner BA. Overexpression of native ORANGE (OR) and OR mutant protein in Chlamydomonas reinhardtii enhances carotenoid and ABA accumulation and increases resistance to abiotic stress. Metab Eng, 2021, 68: 94-105.

[263]

Ye L, Zhang C, Bi C, Li Q, Zhang X. Combinatory optimization of chromosomal integrated mevalonate pathway for β-carotene production in Escherichia coli. Microb Cell Fact, 2016, 15(1): 202.

[264]

Yee DA, DeNicola AB, Billingsley JM, Creso JG, Subrahmanyam V, Tang Y. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Metab Eng, 2019, 55: 76-84.

[265]

Yin J, Wang H, Fu XZ, Gao X, Wu Q, Chen GQ. Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp. Appl Microbiol Biotechnol, 2015, 99(13): 5523-5534.

[266]

Yin X, Shin HD, Li J, Du G, Liu L, Chen J. Pgas, a low-pH-induced promoter, as a tool for dynamic control of gene expression for metabolic engineering of Aspergillus niger. Appl Environ Microbiol, 2017, 83(6): e03222-16.

[267]

Yoshida E, Kojima M, Suzuki M, Matsuda F, Shimbo K, Onuki A, Nishio Y, Usuda Y, Kondo A, Ishii J. Increased carvone production in Escherichia coli by balancing limonene conversion enzyme expression via targeted quantification concatemer proteome analysis. Sci Rep, 2021, 11(1): 22126.

[268]

Yu K, Liu C, Kim B-G, Lee D-Y. Synthetic fusion protein design and applications. Biotechnol Adv, 2015, 33(1): 155-164.

[269]

Yu H, Wang N, Huo W, Zhang Y, Zhang W, Yang Y, Chen Z, Huo Y-X. Establishment of BmoR-based biosensor to screen isobutanol overproducer. Microb Cell Fact, 2019, 18(1): 30.

[270]

Yuan J, Ching C-B. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae. Microb Cell Fact, 2015, 14: 38-38.

[271]

Yuste R. Fluorescence microscopy today. Nat Methods, 2005, 2(12): 902-904.

[272]

Zeng W, Guo L, Xu S, Chen J, Zhou J. High-throughput screening technology in industrial biotechnology. Trends Biotechnol, 2020

[273]

Zhang H, Wang X. Modular co-culture engineering, a new approach for metabolic engineering. Metab Eng, 2016, 37: 114-121.

[274]

Zhang F, Cong L, Lodato S, Kosuri S, Church G, Arlotta P. LETTErs efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol, 2011, 29: 149-153.

[275]

Zhang C, Chen X, Stephanopoulos G, Too HP. Efflux transporter engineering markedly improves amorphadiene production in Escherichia coli. Biotechnol Bioeng, 2016, 113(8): 1755-1763.

[276]

Zhang C, Liu J, Zhao F, Lu C, Zhao GR, Lu W. Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae. Metab Eng, 2018, 49: 28-35.

[277]

Zhang C, Seow VY, Chen X, Too H-P. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli. Nat Commun, 2018, 9(1): 1858.

[278]

Zhang C, Li M, Zhao G-R, Lu W. Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory. Microb Cell Fact, 2019, 18(1): 160.

[279]

Zhang X, Liu X, Meng Y, Zhang L, Qiao J, Zhao G-R. Combinatorial engineering of Saccharomyces cerevisiae for improving limonene production. Biochem Eng J, 2021, 176: 108155.

[280]

Zhang Y, Song X, Lai Y, Mo Q, Yuan J. High-yielding terpene-based biofuel production in Rhodobacter capsulatus. ACS Synth Biol, 2021

[281]

Zhao EM, Zhang Y, Mehl J, Park H, Lalwani MA, Toettcher JE, Avalos JL. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature, 2018, 555(7698): 683-687.

[282]

Zhao Y, Zhu K, Li J, Zhao Y, Li S, Zhang C, Xiao D, Yu A. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica. Microb Biotechnol, 2021

[283]

Zhou J, Wang C, Yang L, Choi ES, Kim SW. Geranyl diphosphate synthase: an important regulation point in balancing a recombinant monoterpene pathway in Escherichia coli. Enzyme Microb Technol, 2015, 68: 50-55.

[284]

Zhou L, Ding Q, Jiang GZ, Liu ZN, Wang HY, Zhao GR. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A. Microb Cell Fact, 2017, 16(1): 84.

[285]

Zhou S, Lyu Y, Li H, Koffas MAG, Zhou J. Fine-tuning the (2S)-naringenin synthetic pathway using an iterative high-throughput balancing strategy. Biotechnol Bioeng, 2019, 116(6): 1392-1404.

[286]

Zhou P, Du Y, Fang X, Xu N, Yue C, Ye L. Combinatorial modulation of linalool synthase and farnesyl diphosphate synthase for linalool overproduction in Saccharomyces cerevisiae. J Agric Food Chem, 2021, 69(3): 1003-1010.

[287]

Zhu M, Wang C, Sun W, Zhou A, Wang Y, Zhang G, Zhou X, Huo Y, Li C. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metab Eng, 2018, 45: 43-50.

[288]

Zhu Z-T, Du M-M, Gao B, Tao X-Y, Zhao M, Ren Y-H, Wang F-Q, Wei D-Z. Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction. Metab Eng, 2021, 68: 232-245.

[289]

Zhuang Y, Jiang G-L, Zhu M-J. Atmospheric and room temperature plasma mutagenesis and astaxanthin production from sugarcane bagasse hydrolysate by Phaffia rhodozyma mutant Y1. Process Biochem, 2020, 91: 330-338.

Funding

Natural Science Foundation of Jiangsu Province(BK20190610)

Postdoctoral Science Foundation of Jiangsu Province(2019M651696)

Fundamental Research Funds for the Central Universities(JUSRP11963)

111 Project (111-2-06)

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/