Zymomonas mobilis as an emerging biotechnological chassis for the production of industrially relevant compounds

Adelaide Braga , Daniela Gomes , João Rainha , Cláudia Amorim , Beatriz B. Cardoso , Eduardo J. Gudiña , Sara C. Silvério , Joana L. Rodrigues , Lígia R. Rodrigues

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 128

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 128 DOI: 10.1186/s40643-021-00483-2
Review

Zymomonas mobilis as an emerging biotechnological chassis for the production of industrially relevant compounds

Author information +
History +
PDF

Abstract

Zymomonas mobilis is a well-recognized ethanologenic bacterium with outstanding characteristics which make it a promising platform for the biotechnological production of relevant building blocks and fine chemicals compounds. In the last years, research has been focused on the physiological, genetic, and metabolic engineering strategies aiming at expanding Z. mobilis ability to metabolize lignocellulosic substrates toward biofuel production. With the expansion of the Z. mobilis molecular and computational modeling toolbox, the potential of this bacterium as a cell factory has been thoroughly explored. The number of genomic, transcriptomic, proteomic, and fluxomic data that is becoming available for this bacterium has increased. For this reason, in the forthcoming years, systems biology is expected to continue driving the improvement of Z. mobilis for current and emergent biotechnological applications. While the existing molecular toolbox allowed the creation of stable Z. mobilis strains with improved traits for pinpointed biotechnological applications, the development of new and more flexible tools is crucial to boost the engineering capabilities of this bacterium. Novel genetic toolkits based on the CRISPR-Cas9 system and recombineering have been recently used for the metabolic engineering of Z. mobilis. However, they are mostly at the proof-of-concept stage and need to be further improved.

Keywords

Bioproducts / Industrial chassis / Metabolic Engineering / Synthetic biology / Zymomonas mobilis

Cite this article

Download citation ▾
Adelaide Braga, Daniela Gomes, João Rainha, Cláudia Amorim, Beatriz B. Cardoso, Eduardo J. Gudiña, Sara C. Silvério, Joana L. Rodrigues, Lígia R. Rodrigues. Zymomonas mobilis as an emerging biotechnological chassis for the production of industrially relevant compounds. Bioresources and Bioprocessing, 2021, 8(1): 128 DOI:10.1186/s40643-021-00483-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agrawal M, Mao Z, Chen RR. Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol Bioeng, 2011, 108: 777-785.

[2]

Ahmed AS, Farag SS, Hassan IA, Botros HW. Production of gluconic acid by using some irradiated microorganisms. J Radiat Res Appl Sci, 2015, 8: 374-380.

[3]

Alvin A, Kim J, Jeong GT, . Industrial robustness linked to the gluconolactonase from Zymomonas mobilis. Appl Microbiol Biotechnol, 2017, 101: 5089-5099.

[4]

An K, Hu F, Bao J. Simultaneous saccharification of inulin and starch using commercial glucoamylase and the subsequent bioconversion to high titer sorbitol and gluconic acid. Appl Biochem Biotechnol, 2013, 171: 2093-2104.

[5]

Anastassiadis S, Aivasidis A, Wandrey C. Continuous gluconic acid production by isolated yeast-like mould strains of Aureobasidium pullulans. Appl Microbiol Biotechnol, 2003, 61: 110-117.

[6]

Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv, 2008, 26: 89-105.

[7]

Banta A, Enright A, Siletti C, Peters JM. A high-efficacy CRISPR interference system for gene function discovery in Zymomonas mobilis. Appl Environ Microbiol, 2020

[8]

Barrow K, Collins J, Leigh D, . Sorbitol production by Zymomonas mobilis. Appl Microbiol Biotechnol, 1984, 20: 225-232.

[9]

Behera S, Mohanty RC, Ray RC. Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and ca-alginate matrices. Brazilian J Microbiol, 2012, 43: 1499-1507.

[10]

Bekers M, Laukevics J, Upite D, . Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochem, 2002, 38: 701-706.

[11]

Blombach B, Riester T, Wieschalka S, . Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol, 2011, 77: 3300-3310.

[12]

Bochner B, Gomez V, Ziman M, . Phenotype microarray profiling of Zymomonas mobilis ZM4. Appl Biochem Biotechnol, 2010, 161: 116-123.

[13]

Braga A, Amorim C, Rodrigues JL et al (2019) Zymomonas mobilis as a whole-cell biocatalyst for the production of prebiotics. In: Abstracts of MicroBiotec 19 - Congress of Microbiology and Biotechnology 2019. University of Coimbra, Coimbra, Portugal, 5–7 Dec 2019, p 482

[14]

Braide W, Oji IO, Adeleye SA, Korie MC. Comparative study of bioethanol production from sugarcane molasses by using Zymomonas mobilis and Saccharomyces cerevisiae. Int J Appl Microbiol Biotechnol Res, 2018, 6: 50-60.

[15]

Brestic-Goachet N, Gunasekaran P, Cami B, Baratti JC. Transfer and Expression of an Erwinia chrysanthemi Cellulase Gene in Zymomonas mobilis. Microbiology, 1989, 135: 893-902.

[16]

Browne GM, Skotnicki ML, Goodman AE, Rogers PL. Transformation of Zymomonas mobilis by a hybrid plasmid. Plasmid, 1984, 12: 211-214.

[17]

Buijs NA, Siewers V, Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol, 2013, 17: 480-488.

[18]

Cao QH, Shao HH, Qiu H, . Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4. Biosci Biotechnol Biochem, 2017, 81: 453-459.

[19]

Carey VC, Walia SK, Ingram LO. Expression of a lactose transposon (Tn951) in Zymomonas mobilis. Appl Environ Microbiol, 1983, 46: 1163-1168.

[20]

Chen CT, Liao JC. Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett, 2016, 363: 1-13.

[21]

Chen X, Nielsen KF, Borodina I, . Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels, 2011, 4: 1-12.

[22]

Chun UH, Rogers PL. The simultaneous production of sorbitol from fructose and gluconic acid from glucose using an oxidoreductase of Zymomonas mobilis. Appl Microbiol Biotechnol, 1988, 29: 19-24.

[23]

Conway T, Byun M, Ingram L. Expression Vector for Zymomonas mobilis. Appl Environ Microbiol, 1987, 53: 235-241.

[24]

Coton M, Laplace JM, Auffray Y, Coton E. Polyphasic study of Zymomonas mobilis strains revealing the existence of a novel subspecies Z. mobilis subsp. francensis subsp. nov., isolated from French cider. Int J Syst Evol Microbiol, 2006, 56: 121-125.

[25]

de la Rosa O, Flores-Gallegos AC, Muñíz-Marquez D, . Fructooligosaccharides production from agro-wastes as alternative low-cost source. Trends Food Sci Technol, 2019, 91: 139-146.

[26]

Dewi AS, Stevanus RA, Sandra MA, . The effect of mixed culture of zymomonas mobilis and pichia stipitis in ethanol production of sugar palm (Arenga pinnata). Mater Sci Forum, 2019, 964: 145-150.

[27]

Díaz VHG, Willis MJ. Ethanol production using Zymomonas mobilis: Development of a kinetic model describing glucose and xylose co-fermentation. Biomass Bioenerg, 2019, 123: 41-50.

[28]

DiMarco AA, Romano AH. D-Glucose transport system of Zymomonas mobilis. Appl Environ Microbiol, 1985, 49: 151-157.

[29]

Doelle MB, Doelle HW. Sugar-cane molasses fermentation by Zymomonas mobilis. Appl Microbiol Biotechnol, 1990, 33: 31-35.

[30]

Doelle MB, Greenfield PF, Doelle HW. The relationship between sucrose hydrolysis, sorbitol formation and mineral ion concentration during bioethanol formation using Zymomonas mobilis 2716. Appl Microbiol Biotechnol, 1990, 34: 160-167.

[31]

Dong HW, Bao J, Ryu DDY, Zhong JJ. Design and construction of improved new vectors for Zymomonas mobilis recombinants. Biotechnol Bioeng, 2011, 108: 1616-1627.

[32]

Dong G, He M, Feng H. Functional characterization of CRISPR-Cas system in the ethanologenic bacterium Zymomonas mobilis ZM4. Adv Microbiol, 2016, 06: 178-189.

[33]

Duvnjak Z, Turcotte G, Duan ZD. Production of sorbitol and ethanol from Jerusalem artichokes by Saccharomyces cerevisiae ATCC 36859. Appl Microbiol Biotechnol, 1991, 35: 711-715.

[34]

Erdal Ö, Kaplan-Türköz B, Taştan Ö, Göksungur Y. Levansucrase production by Zymomonas mobilis: Optimization of process parameters and fructooligosaccharide production. J Food Biochem, 2017, 41: 1-9.

[35]

Felczak MM, Bowers RM, Woyke T, Teravest MA. Biotechnology for Biofuels Zymomonas diversity and potential for biofuel production. Biotechnol Biofuels, 2021, 14: 112.

[36]

Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, . Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol, 2016, 36: 259-267.

[37]

Folle AB, Baschera VM, Vivan LT, . Assessment of different systems for the production of aldonic acids and sorbitol by calcium alginate-immobilized Zymomonas mobilis cells. Bioprocess Biosyst Eng, 2018, 41: 185-194.

[38]

Fu N, Peiris P. Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonas mobilis and Pachysolen tannophilus. World J Microbiol Biotechnol, 2008, 24: 1091-1097.

[39]

Fu N, Peiris P, Markham J, Bavor J. A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb Technol, 2009, 45: 210-217.

[40]

Ghosh IN, Martien J, Hebert AS, . OptSSeq explores enzyme expression and function landscapes to maximize isobutanol production rate. Metab Eng, 2019, 52: 324-340.

[41]

Gunasekaran P, Karunakaran T, Cami B, . Cloning and sequencing of the sacA gene: Characterization of a sucrase from Zymomonas mobilis. J Bacteriol, 1990, 172: 6727-6735.

[42]

Gunasekaran P, Mukundan G, Kannan R, . The sacB and sacC genes encoding levansucrase and sucrase form a gene cluster in Zymomonas mobilis. Biotechnol Lett, 1995, 17: 635-642.

[43]

Hazeena SH, Sindhu R, Pandey A, Binod P. Lignocellulosic bio-refinery approach for microbial 2,3-Butanediol production. Bioresour Technol, 2020, 302.

[44]

He M, Li Q, Liu X, . Bio-ethanol production from bamboo residues with lignocellulose fractionation technology (LFT) and separate hydrolysis fermentation (SHF) by Zymomonas Mobilis. Am J Biomass Bioenergy, 2013, 2: 15-24.

[45]

He MX, Wu B, Qin H, . Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol Biofuels, 2014, 7: 1-15.

[46]

Hodge DB, Karim MN. Modeling and advanced control of recombinant Zymomonas mobilis fed-batch fermentation. Biotechnol Prog, 2002, 18: 572-579.

[47]

Jan KN, Tripathi AD, Singh S, . Enhanced sorbitol production under submerged fermentation using Lactobacillus plantarum. Appl Food Biotechnol, 2017, 4: 85-92.

[48]

Johns MR, Greenfield PF, Doelle HW. Fiechter A. Byproducts from Zymomonas mobilis. Advances in Biochemical Engineering/Biotechnology, 1991, Berlin : Springer, 97-121.

[49]

Jung SK, Parisutham V, Jeong SH, Lee SK. Heterologous expression of plant cell wall degrading enzymes for effective production of cellulosic biofuels. J Biomed Biotechnol, 2012

[50]

Kalnenieks U. Physiology of Zymomonas mobilis: Some Unanswered Questions. Adv Microb Physiol, 2006, 51: 73-117.

[51]

Kalnenieks U, Galinina N, Toma MM, . Respiratory behaviour of a Zymomonas mobilis adhB::kanr mutant supports the hypothesis of two alcohol dehydrogenase isoenzymes catalysing opposite reactions. FEBS Lett, 2006, 580: 5084-5088.

[52]

Kannan R, Mukundan G, Aït-Abdelkader N, . Molecular cloning and characterization of the extracellular sucrase gene (sacC) of Zymomonas mobilis. Arch Microbiol, 1995, 163: 195-204.

[53]

Kerr AL, Jeon YJ, Svenson CJ, . DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4. Appl Microbiol Biotechnol, 2011, 89: 761-769.

[54]

Khandelwal R, Agrawal S, Singhi D, . Deletion of pyruvate decarboxylase gene in Zymomonas mobilis by recombineering through bacteriophage lambda red genes. J Microbiol Methods, 2018, 151: 111-117.

[55]

Khanvilkar SS, Arya SS. Fructooligosaccharides: Applications and health benefits: a review. Agro Food Ind Hi Tech, 2015, 26: 8-12.

[56]

Kim JW, Kim J, Seo SO, . Enhanced production of 2,3-Butanediol by engineered Saccharomyces cerevisiae through fine-tuning of Pyruvate decarboxylase and NADH oxidase activities. Biotechnol Biofuels, 2016, 9: 1-12.

[57]

Kosako Y, Yabuuchi E, Naka T, et al (2000) Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter shiba and shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobac. Microbiol Immunol 44:563–575. doi: https://doi.org/10.1111/j.1348-0421.2000.tb02535.x

[58]

Kurumbang NP, Vera JM, Hebert AS, . Heterologous expression of a glycosyl hydrolase and cellular reprogramming enable Zymomonas mobilis growth on cellobiose. PLoS ONE, 2020, 15: 1-24.

[59]

Lal PB, Wells FM, Lyu Y, . A Markerless Method for Genome Engineering in Zymomonas mobilis ZM4. Front Microbiol, 2019, 10: 1-11.

[60]

Leigh D, Scopes RK, Rogers PL. A proposed pathway for sorbitol production by Zymomonas mobilis. Appl Microbiol Biotechnol, 1984, 20: 413-415.

[61]

Leksawasdi N, Joachimsthal EL, Rogers PL. Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis. Biotechnol Lett, 2001, 23: 1087-1093.

[62]

Li Y, Zhai R, Jiang X, Chen X, Yuan X, Liu Z, Jin M. Boosting ethanol productivity of Zymomonas mobilis 8b in enzymatic hydrolysate of dilute acid and ammonia pretreated corn stover through medium optimization high cell density fermentation and cell recycling. Front Microbiol., 2019

[63]

Liu Z, Liu P, Xiao D, Zhang X. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway. J Ind Microbiol Biotechnol, 2016, 43: 851-860.

[64]

Liu YF, Hsieh CW, Chang YS, Wung BS (2017) Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation. BMC Biotechnol 17(1). https://doi.org/10.1186/s12896-017-0385-y

[65]

Liu CG, Cao LY, Wen Y, . Intracellular redox manipulation of Zymomonas mobilis for improving tolerance against lignocellulose hydrolysate-derived stress. Chem Eng Sci, 2020, 227.

[66]

Liu Y, Ghosh IN, Martien J, . Regulated redirection of central carbon flux enhances anaerobic production of bioproducts in Zymomonas mobilis. Metab Eng, 2020, 20: 1-57.

[67]

Lixin M, Wenfang P, Shihui Y, et al (2019a) The efficient delet method of genome large fragment and its application based on the endogenous CRISPR-Cas system of zymomonas mobilis. CN110408642A.

[68]

Lixin M, Wenfang P, Shihui Y, et al (2019b) Edit methods and its application simultaneously of polygenic locus based on the endogenous CRISPR-Cas system of Zymomonas mobilis. CN110331158A.

[69]

Lorenzetti MFS, Moro MR, García-Cruz CH. Alginate/PVA beads for levan production by Zymomonas mobilis. J Food Process Eng, 2015, 38: 31-36.

[70]

Luo Z, Bao J. Secretive expression of heterologous β-glucosidase in Zymomonas mobilis. Bioresour Bioprocess, 2015, 2: 2-7.

[71]

Lyness EW, Doelle H. Levansucrase from Zymomonas mobilis. Biotechnol Lett, 1983, 5: 305-310.

[72]

Ma’As MF, Ghazali HM, Chieng S. Bioethanol production from Brewer’s rice by Saccharomyces cerevisiae and Zymomonas mobilis: evaluation of process kinetics and performance. Energy Sources Part A Recover Util Environ Eff, 2020, 00: 1-14.

[73]

Ma K, Ruan Z, Shui Z, . Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis. Bioresour Technol, 2016, 203: 295-302.

[74]

Mohagheghi A, Linger JG, Yang S, . Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate. Biotechnol Biofuels, 2015, 8: 1-9.

[75]

Morita K, Nomura Y, Ishii J, . Heterologous expression of bacterial phosphoenol pyruvate carboxylase and Entner-Doudoroff pathway in Saccharomyces cerevisiae for improvement of isobutanol production. J Biosci Bioeng, 2017, 124: 263-270.

[76]

Neale AD, Scopes RK, Wettenhall REH, Hoogenraad NJ. Pyruvate decarboxylase of Zymomonas mobilis: Isolation, properties, and genetic expression in Escherichia coli. J Bacteriol, 1987, 169: 1024-1028.

[77]

Nguyen DTT, Praveen P, Loh KC. Co-culture of Zymomonas mobilis and Scheffersomyces stipitis immobilized in polymeric membranes for fermentation of glucose and xylose to ethanol. Biochem Eng J, 2019, 145: 145-152.

[78]

Nissen L, Pérez-Martínez G, Yebra MJ. Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon. FEMS Microbiol Lett, 2005, 249: 177-183.

[79]

Nobre C, Castro CC, Hantson A-L, . Production of High-Content Fructo-Oligosaccharides. World Acad Sci Eng Technol Int J Nutr Food Eng, 2015, 9: 158-163.

[80]

Nobre C, Alves Filho EG, Fernandes FAN, . Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization. LWT - Food Sci Technol, 2018, 89: 58-64.

[81]

Nouri H, Moghimi H, Marashi SA, Elahi E. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. PLoS ONE, 2020, 15: 1-16.

[82]

Öner ET, Hernández L, Combie J. Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnol Adv, 2016, 34: 827-844.

[83]

Palamae S, Choorit W, Chatsungnoen T, Chisti Y. Simultaneous nitrogen fixation and ethanol production by Zymomonas mobilis. J Biotechnol, 2020, 314-315: 41-52.

[84]

Panesar PS, Marwaha SS, Kennedy JF. Zymomonas mobilis: An alternative ethanol producer. J Chem Technol Biotechnol, 2006, 81: 623-635.

[85]

Pappas KM, Galani I, Typas MA. Transposon mutagenesis and strain construction in Zymomonas mobilis. J Appl Microbiol, 1997, 82: 379-388.

[86]

Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature, 2012, 488: 320-328.

[87]

Qiu M, Shen W, Yan X, . Metabolic engineering of Zymomonas mobilis for anaerobic isobutanol production. Biotechnol Biofuels, 2020, 13: 1-14.

[88]

Rainha J, Rodrigues JL, Rodrigues LR. CRISPR-Cas9: A powerful tool to efficiently engineer Saccharomyces cerevisiae. Life, 2021, 11: 1-16.

[89]

Rehr B, Wilhelm C, Sahm H. Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Appl Microbiol Biotechnol, 1991, 35: 144-148.

[90]

Rogers PL, Lee KJ, Skotnicki ML, Tribe DE. Ethanol production by Zymomonas mobilis. Microbial Reactions, 1982, Berlin : Springer, 37-84.

[91]

Rogers PL, Jeon YJ, Lee KJ, Lawford HG. Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol, 2007, 108: 263-288.

[92]

Roukas T. Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation. J Ind Microbiol Biotechnol, 2000, 25: 298-304.

[93]

Rutkis R, Galinina N, Strazdina I, Kalnenieks U. The inefficient aerobic energetics of Zymomonas mobilis: Identifying the bottleneck. J Basic Microbiol, 2014, 54: 1090-1097.

[94]

Rutkis R, Strazdina I, Balodite E, . The low energy-coupling respiration in Zymomonas mobilis accelerates flux in the entner-doudoroff pathway. PLoS ONE, 2016, 11: 1-15.

[95]

Saharkhiz S, Mazaheri D, Shojaosadati SA. Evaluation of bioethanol production from carob pods by Zymomonas mobilis and Saccharomyces cerevisiae in solid submerged fermentation. Prep Biochem Biotechnol, 2013, 43: 415-430.

[96]

Santos-Moriano P, Fernandez-Arrojo L, Poveda A, . Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: effect of reaction conditions. J Mol Catal B Enzym, 2015, 119: 18-25.

[97]

Santos VAQ, Cruz CHG. Ethanol and levan production by sequential bath using Zymomonas mobilis immobilized on alginate and chitosan beads. Acta Sci - Technol, 2016, 38: 263-271.

[98]

Santos VAQ, Cruz CHG. Zymomonas mobilis immobilized on loofa sponge and sugarcane bagasse for levan and ethanol production using repeated batch fermentation. Brazilian J Chem Eng, 2017, 34: 407-418.

[99]

Sarkar P, Mukherjee M, Goswami G, Das D. Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658: a potential platform for co-utilization of glucose and xylose. J Ind Microbiol Biotechnol, 2020, 47: 329-341.

[100]

Senthilkumar V, Rameshkumar N, Busby SJW, Gunasekaran P. Disruption of the Zymomonas mobilis extracellular sucrase gene (sacC) improves levan production. J Appl Microbiol, 2004, 96: 671-676.

[101]

Shen W, Zhang J, Geng B, . Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis. Microb Cell Fact, 2019, 18: 1-11.

[102]

Shui ZX, Qin H, Wu B, . Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl Microbiol Biotechnol, 2015, 99(13): 5739-5748.

[103]

Silveira MM, Wisbeck E, Lemmel C, . Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. J Biotechnol, 1999, 75: 99-103.

[104]

Smith KM, Cho KM, Liao JC. Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol, 2010, 87: 1045-1055.

[105]

Snoep JL, Arfman N, Yomano LP, . Reconstitution of glucose uptake and phosphorylation in a glucose-negative mutant of Escherichia coli by using Zymomonas mobilis genes encoding the glucose facilitator protein and glucokinase. J Bacteriol, 1994, 176: 2133-2135.

[106]

So LY, Chen WY, Lacap-Bugler DC, . PZMO7-Derived shuttle vectors for heterologous protein expression and proteomic applications in the ethanol-producing bacterium Zymomonas mobilis. BMC Microbiol, 2014, 14: 1-16.

[107]

Sootsuwan K, Thanonkeo P, Keeratirakha N, . Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol Biofuels, 2013, 6: 1-13.

[108]

Sulfahri AM, Sumitro SB, Saptasari M. Bioethanol production from algae Spirogyra hyalina using Zymomonas mobilis. Biofuels, 2016, 7: 621-626.

[109]

Swings J, De Ley J. The biology of Zymomonas. Bacteriol Rev, 1977, 41: 1-46.

[110]

Tani Y, Vongsuvanlert V. Sorbitol production by a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201. J Ferment Technol, 1987, 65: 405-411.

[111]

Taran M, Lotfi M, Safaei M. Optimal conditions for levan biopolymer production and its use in the synthesis of bactericidal levan-zno nanocomposite. Biotechnologia, 2019, 100: 397-405.

[112]

Taştan Ö, Sözgen G, Baysal T, Kaplan Türköz B. Production of prebiotic 6-kestose using Zymomonas mobilis levansucrase in carob molasses and its effect on 5-HMF levels during storage. Food Chem, 2019

[113]

Todhanakasem T, Sangsutthiseree A, Areerat K, . Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. N Biotechnol, 2014, 31: 451-459.

[114]

Todhanakasem T, Wu B, Simeon S. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. World J Microbiol Biotechnol, 2020

[115]

Vasan TP, Piriya SP, Prabhu IGD, Vennison JS. Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae. Bioresour Technol, 2011, 102: 2585-2589.

[116]

Viikari L, Berry DR. Carbohydrate metabolism in Zymomonas. Crit Rev Biotechnol, 1988, 7: 237-261.

[117]

Wang GJ, Wang ZS, Zhang YW, Zhang YZ. Cloning and expression of amyE gene from Bacillus subtilis in Zymomonas mobilis and direct production of ethanol from soluble starch. Biotechnol Bioprocess Eng, 2012, 17: 780-786.

[118]

Wang H, Cao S, Wang WT, Wang KT, Jia X. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin. J Ind Microbiol Biotechnol, 2016, 43(6): 861-871.

[119]

Wang X, He Q, Yang Y, . Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng, 2018, 50: 57-73.

[120]

Wang W, Wu B, Qin H, . Genome shuffling enhances stress tolerance of Zymomonas mobilis to two inhibitors. Biotechnol Biofuels, 2019, 12: 1-12.

[121]

Weir PM. The ecology of Zymomonas: a review. Folia Microbiol (praha), 2016, 61: 385-392.

[122]

Wirawan F, Cheng CL, Lo YC, . Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process. Appl Energy, 2020, 266.

[123]

Woodley JM. Bioprocess intensification for the effective production of chemical products. Comput Chem Eng, 2017, 105: 297-307.

[124]

Wu Y, Li T, Cao Q, . RecET recombination system driving chromosomal target gene replacement in Zymomonas mobilis. Electron J Biotechnol, 2017, 30: 118-124.

[125]

Wu R, Chen D, Cao S, . Enhanced ethanol production from sugarcane molasses by industrially engineered: Saccharomyces cerevisiae via replacement of the PHO4 gene. RSC Adv, 2020, 10: 2267-2276.

[126]

Xia J, Yang Y, Liu CG, . Engineering Zymomonas mobilis for Robust Cellulosic Ethanol Production. Trends Biotechnol, 2019, 37: 960-972.

[127]

Xu Y, Chu H, Gao C, . Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng, 2014, 23: 22-33.

[128]

Yang S, Fei Q, Zhang Y, . Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol, 2016, 9: 699-717.

[129]

Yang S, Mohagheghi A, Franden MA, . Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnol Biofuels, 2016, 9: 1-15.

[130]

Yang Y, Shen W, Huang J, . Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era. Biotechnol Biofuels, 2019, 12: 1-13.

[131]

Yi X, Gao Q, Bao J. Expressing an oxidative dehydrogenase gene in ethanologenic strain Zymomonas mobilis promotes the cellulosic ethanol fermentability. J Biotechnol, 2019, 303: 1-7.

[132]

Yoon KH, Park SH, Pack MY. Transfer of Bacillus subtilis endo-β-1,4-glucanase gene into Zymomonasanaerobia. Biotechnol Lett, 1988, 10: 213-216.

[133]

Zachariou M, Scopes RK. Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol, 1986, 167: 863-869.

[134]

Zhang S, Voigt CA. Engineered dCas9 with reduced toxicity in bacteria: Implications for genetic circuit design. Nucleic Acids Res, 2018, 46: 11115-11125.

[135]

Zhang M, Eddy C, Deanda K, . Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science, 1995, 267: 240-243.

[136]

Zhang Q, Nurhayati CCL, . Ethanol production by modified polyvinyl alcohol-immobilized Zymomonas mobilis and in situ membrane distillation under very high gravity condition. Appl Energy, 2017, 202: 1-5.

[137]

Zhang K, Lu X, Li Y, . New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis. Appl Microbiol Biotechnol, 2019, 103: 2087-2099.

[138]

Zhang M, Chou Y-C, Franden MA, Himmel L (2019b) Enginnering Zymomonas for the production of 2,3-butanediol. US20190153483A1

[139]

Zhao N, Bai Y, Liu CG, . Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Biotechnol J, 2014, 9: 362-371.

[140]

Zheng Y, Han J, Wang B, . Characterization and repurposing of the endogenous Type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering. Nucleic Acids Res, 2019, 47: 11461-11475.

[141]

Zou SL, Hong JF, Wang C, . Construction of an unmarked Zymomonas mobilis mutant using a site-specific FLP recombinase. Food Technol Biotechnol, 2012, 50: 406-411.

[142]

Zou SL, Zhang K, You L, . Enhanced electrotransformation of the ethanologen Zymomonas mobilis ZM4 with plasmids. Eng Life Sci, 2012, 12: 152-161.

Funding

Fundação para a Ciência e a Tecnologia(UIDB/04469/2020)

Fundação para a Ciência e a Tecnologia(UMINHO/BPD/4/2019)

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/