Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in Escherichia coli

Davinder Lall , Dragan Miscevic , Mark Bruder , Adam Westbrook , Marc Aucoin , Murray Moo-Young , C. Perry Chou

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 122

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 122 DOI: 10.1186/s40643-021-00482-3
Research

Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in Escherichia coli

Author information +
History +
PDF

Abstract

Strain engineering and bioprocessing strategies were applied for biobased production of porphobilinogen (PBG) using Escherichia coli as the cell factory. The non-native Shemin/C4 pathway was first implemented by heterologous expression of hemA from Rhodopseudomonas spheroids to supply carbon flux from the natural tricarboxylic acid (TCA) pathways for PBG biosynthesis via succinyl-CoA. Metabolic strategies were then applied for carbon flux direction from the TCA pathways to the C4 pathway. To promote PBG stability and accumulation, Clustered Regularly Interspersed Short Palindromic Repeats interference (CRISPRi) was applied to repress hemC expression and, therefore, reduce carbon flowthrough toward porphyrin biosynthesis with minimal impact to cell physiology. To further enhance PBG biosynthesis and accumulation under the hemC-repressed genetic background, we further heterologously expressed native E. coli hemB. Using these engineered E. coli strains for bioreactor cultivation based on ~ 30 g L−1 glycerol, we achieved high PBG titers up to 209 mg L−1, representing 1.73% of the theoretical PBG yield, with improved PBG stability and accumulation. Potential biochemical, genetic, and metabolic factors limiting PBG production were systematically identified for characterization.

Keywords

Escherichia coli / Glycerol / Glyoxylate shunt / Porphobilinogen (PBG) / Strain engineering / Succinyl-CoA / Tricarboxylic acid (TCA) cycle

Cite this article

Download citation ▾
Davinder Lall, Dragan Miscevic, Mark Bruder, Adam Westbrook, Marc Aucoin, Murray Moo-Young, C. Perry Chou. Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in Escherichia coli. Bioresources and Bioprocessing, 2021, 8(1): 122 DOI:10.1186/s40643-021-00482-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson KE. Acute hepatic porphyrias: Current diagnosis & management. Mol Genet Metab, 2019, 128(3): 219-227.

[2]

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol, 2006

[3]

Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior BA, Wang Z. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv, 2013, 31(8): 1200-1223.

[4]

Cheng K-K, Wang G-Y, Zeng J, Zhang J-A. Improved succinate production by metabolic engineering. Biomed Res Int, 2013, 2013: 1-12.

[5]

Cherepanov PP, Wackernagel W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 1995, 158(1): 9-14.

[6]

Ciriminna R, Pina CD, Rossi M, Pagliaro M. Understanding the glycerol market. Eur J Lipid Sci Technol, 2014, 116(10): 1432-1439.

[7]

Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci, 2000, 97(12): 6640-6645.

[8]

Dharmadi Y, Murarka A, Gonzalez R. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng, 2006, 94(5): 821-829.

[9]

Durnin G, Clomburg J, Yeates Z, Alvarez PJ, Zygourakis K, Campbell P, Gonzalez R. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng, 2009, 103(1): 148-161.

[10]

Frankenberg N, Moser J, Jahn D. Bacterial heme biosynthesis and its biotechnological application. Appl Microbiol Biotechnol, 2003, 63(2): 115-127.

[11]

Frydman B, Despuy ME, Rapoport H. Pyrroles from Azaindoles. A synthesis of porphobilinogen. J Am Chem Soc, 1965, 87: 3530-3531.

[12]

Frydman B, Reil S, Despuy ME, Rapoport H. Pyrroles from azaindoles. A synthesis of porphobilinogen and related pyrroles. J Am Chem Soc, 1969, 91(9): 2338-2342.

[13]

Gibson SL, Mackenzie JC, Goldberg A. The diagnosis of industrial lead poisoning. Br J Ind Med, 1968, 25(1): 40-51.

[14]

Hatch T, Lascelles J. Accumulation of porphobilinogen and other pyrroles by mutant and wild-type rhodopseudomonas-spheroides—regulation by heme. Arch Biochem Biophys, 1972, 150(1): 147.

[15]

Hatch T, Lascelles J. Accumulation of porphobilinogen and other pyrroles by mutant and wild type Rhodopseudomonas spheroides: regulation by heme. Arch Biochem Biophys, 1972, 150(1): 147-153.

[16]

Jackson A, MacDonald S. Synthesis of porphobilinogen. Can J Chem, 1957, 35(7): 715-722.

[17]

Jacobi PA, Li YK. Synthesis of porphobilinogen via a novel ozonide cleavage reaction. J Am Chem Soc, 2001, 123(38): 9307-9312.

[18]

Jahn D, Verkamp E, Soll D. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci, 1992, 17(6): 215-218.

[19]

Jobling MG, Holmes RK. Construction of vectors with the p15a replicon, kanamycin resistance, inducible lacZ alpha and pUC18 or pUC19 multiple cloning sites. Nucleic Acids Res, 1990, 18(17): 5315-5316.

[20]

Jones MI, Froussios C, Evans DA. A short, versatile synthesis of porphobilinogen. J Chem Soc Chem Commun, 1976

[21]

Kenner GW, Rimmer J, Smith KM, Unsworth JF. Pyrroles and related compounds. Part 38. Porphobilinogen synthesis. J Chem Soc Perkin, 1977, 1(3): 332-340.

[22]

Kirkpatrick C, Maurer LM, Oyelakin NE, Yoncheva YN, Maurer R, Slonczewski JL. Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol, 2001, 183(21): 6466-6477.

[23]

Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res, 2016, 44(W1): W272-W276.

[24]

Layer G, Reichelt J, Jahn D, Heinz DW. Structure and function of enzymes in heme biosynthesis. Protein Sci, 2010, 19(6): 1137-1161.

[25]

Lee MJ, Kim HJ, Lee JY, Kwon AS, Jun SY, Kang SH, Kim P. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. J Microbiol Biotechnol, 2013, 23(5): 668-673.

[26]

Leung GC, Fung SS, Gallio AE, Blore R, Alibhai D, Raven EL, Hudson AJ. Unravelling the mechanisms controlling heme supply and demand. Proc Natl Acad Sci U S A, 2021

[27]

Mauzerall D, Granick S. THE occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. J Biol Chem, 1956, 219(1): 435-446.

[28]

Miller JH. A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria, 1992, NY: Cold Spring Harbor Laboratory Press.

[29]

Miscevic D, Mao JY, Kefale T, Abedi D, Moo-Young M, Perry Chou C. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnol Bioeng, 2021, 118(1): 30-42.

[30]

Möbius K, Arias-Cartin R, Breckau D, Hännig AL, Riedmann K, Biedendieck R, Schröder S, Becher D, Magalon A, Moser J, Jahn M. Heme biosynthesis is coupled to electron transport chains for energy generation. Proc Natl Acad Sci, 2010, 107(23): 10436-10441.

[31]

Nandi DL. Delta-aminolevulinic acid synthase of Rhodopseudomonas spheroids. Binding of pyridoxal phosphate to the enzyme. Arch Biochem Biophys, 1978, 188(2): 266-271.

[32]

Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol, 1974, 119(3): 736-747.

[33]

Neier R. A novel synthesis of porphobilinogen: Synthetic and biosynthetic studies. J Heterocycl Chem, 2000, 37: 487-508.

[34]

Pengpumkiat S, Koesdjojo M, Rowley ER, Mockler TC, Remcho VT. Rapid synthesis of a long double-stranded oligonucleotide from a single-stranded nucleotide using magnetic beads and an Oligo library. PLoS ONE, 2016, 11(3): e0149774-e0149774.

[35]

Piao Y, Kiatpapan P, Yamashita M, Murooka Y. Effects of expression of hemA and hemB genes on production of porphyrin in Propionibacterium freudenreichii. Appl Environ Microbiol, 2004, 70(12): 7561-7566.

[36]

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183.

[37]

Shin J-A, Kwon YD, Kwon OR, Lee ES, Kim P. 5-aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. J Microbiol Biotechnol, 2007, 17(9): 1579-1584.

[38]

Srirangan K, Liu X, Westbrook A, Akawi L, Pyne ME, Moo-Young M, Chou CP. Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli. Appl Microbiol Biotechnol, 2014, 98(22): 9499-9515.

[39]

Thakker C, Martinez I, San KY, Bennett GN. Succinate production in Escherichia coli. Biotechnol J, 2012, 7(2): 213-224.

[40]

Vogelmann H, Ghahremani B, Wagner F. Preparation of porphobilinogen and uroporphyrin III from δ-aminolaevulinic acid by pretreated cells of Chromatium vinosum. Eur J Appl Microbiol Biotechnol, 1975, 2(1): 19-28.

[41]

Westall RG. Isolation of porphobilinogen from the urine of a patient with acute porphyria. Nature, 1952, 170(4328): 614-616.

[42]

Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv, 2019, 37(4): 538-568.

[43]

Zhang J, Kang Z, Chen J, Du G. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci Rep, 2015, 5: 8584.

Funding

Natural Sciences and Engineering Research Council of Canada(RGPIN-2019-04611)

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/