Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight

Seon Hwa Kim , Vladimir Vujanovic

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 127

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 127 DOI: 10.1186/s40643-021-00479-y
Research

Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight

Author information +
History +
PDF

Abstract

Mycoparasites are an assemblage of biotrophic and necrotrophic fungi that occur on plant pathogenic fungal hosts. Biotrophic mycoparasites are often overlooked in transcriptomic-based biocontrol studies. Sphaerodes mycoparasitica (S.m.) is a specific biotrophic mycoparasite of plant pathogenic Fusarium graminearum (F.g.), a devastating Fusarium head blight (FHB) disease in small-grain cereals. To understand the biotrophic mycoparasitism comprehensively, we performed Illumina RNA-Seq transcriptomic study on the fungus–fungus interaction in vitro. The aim is to identify the transcript-level mechanism related to the biotrophic S.m. mycoparasitism, particularly its ability to effectively control the F.g. 3-ADON chemotype. A shift in the transcriptomic profile of the mycoparasite was triggered in response to its interaction with F.g. during recognition (1.5 days) and colonization (3.5 days) steps. RNA-Seq analysis revealed ~ 30% of annotated transcripts with "function unknown". Further, 14 differentially expressed genes functionally linked to the biotrophic mycoparasitism were validated by quantitative real-time PCR (qPCR). The gene expression patterns of the filamentous haemagglutinin/adhesin/attachment factor as well as cell wall-degrading glucanases and chitinases were upregulated by host interaction. Besides, mycoparasitism-associated antioxidant resistance genes encoding ATP-binding cassette (ABC) transporter(s) and glutathione synthetase(s) were upregulated. However, the thioredoxin reductase was downregulated which infers that this antioxidant gene can be used as a resistance marker to assess S.m. antifungal and antimycotoxigenic activities. The interactive transcriptome of S. mycoparasitica provides new insights into specific mycoparasitism and will contribute to future research in controlling FHB.

Graphic Abstract

Keywords

Functional transcriptomics / Biotrophic mycoparasitism / Fusarium biocontrol / Hyphal cell–cell interaction / RNA-Seq / qPCR / Gene expression

Cite this article

Download citation ▾
Seon Hwa Kim, Vladimir Vujanovic. Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight. Bioresources and Bioprocessing, 2021, 8(1): 127 DOI:10.1186/s40643-021-00479-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alfiky A, Weisskopf L. Deciphering Trichoderma–plant–pathogen interactions for better development of biocontrol applications. J Fungi, 2021, 7: 61.

[2]

Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LSL. UniProt: the universal protein knowledgebase. Nucleic Acids Res, 2004, 32(1): 115-119.

[3]

Bernardi B, Kayacan Y, Wendland J. Expansion of a telomeric FLO/ALS-like sequence gene family in Saccharomycopsis fermentans. Front Genet, 2018, 9: 536.

[4]

Birr T, Jensen T, Preußke N, Sönnichsen FD, De Boevre M, De Saeger S, Hasler M, Verreet J-A, Klink H. Occurrence of Fusarium mycotoxins and their modified forms in forage maize cultivars. Toxins, 2021, 13: 110.

[5]

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.

[6]

Carsolio C, Gutierrez A, Jimenez B, Van Montagu M, Herrera-Estrella A. Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci USA, 1994, 91(23): 10903-10907.

[7]

Domsch KH, Gams W, Anderson T-H (1980) Compendium of soil fungi, vol 1. Academic Press, London, P 859 (Reprint Eching: IHW-Verlag. 1993)

[8]

Dubey MK, Jensen DF, Karlsson M. An ATP-binding cassette pleiotropic drug transporter protein is required for xenobiotic tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea. Mol Plant Microbe Interact, 2014, 27(7): 725-732.

[9]

Fernandez J, Wilson RA. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. PLoS ONE, 2014, 9(1): e87300-e87300.

[10]

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res, 2015, 44(D1): D279-D285.

[11]

Galperin MY, Kristensen DM, Makarova KS, Wolf YI, Koonin EV. Microbial genome analysis: the COG approach. Brief Bioinform, 2019, 20(4): 1063-1070.

[12]

Ganeshan S, Kim SH, Vujanovic V. Scaling-up production of plant endophytes in bioreactors: concepts, challenges and perspectives. Bioresour Bioprocess, 2021, 8(1): 63.

[13]

Geremia RA, Goldman GH, Jacobs D, Ardiles W, Vila SB, Van Montagu M, Herrera-Estrella A. Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol, 1993, 8(3): 603-613.

[14]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 2011, 29(7): 644-652.

[15]

Gruber S, Seidl-Seiboth V. Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology (reading, England), 2012, 158(1): 26-34.

[16]

Gullner G, Komives T, Király L, Schröder P. Glutathione S-transferase enzymes in plant-pathogen interactions. Front Plant Sci, 2018, 9: 1836.

[17]

Gupta KJ, Mur LAJ, Brotman Y. Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. Mol Plant-Microbe Interact, 2014, 27: 307-314.

[18]

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc, 2013, 8(8): 1494-1512.

[19]

Karlsson I, Persson P, Friberg H. Fusarium head blight from a microbiome perspective. Front Microbiol, 2021, 12: 371.

[20]

Kim SH, Vujanovic V. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production. Appl Microbiol Biotechnol, 2016, 100(12): 5257-5272.

[21]

Kim SH, Vujanovic V. Biodegradation and biodetoxification of Fusarium mycotoxins by Sphaerodes mycoparasitica. AMB Express, 2017, 7(1): 145.

[22]

Kim SH, Vujanovic V. Changes in mycoparasite-Fusarium hosts interfaces in response to hostile environment as revealed by water contact angle and atomic force microscopy. Biol Control, 2018, 121: 247-255.

[23]

Kim SH, Lahlali R, Karunakaran C, Vujanovic V. Specific mycoparasite-Fusarium graminearum molecular signatures in germinating seeds disabled fusarium head blight pathogen’s infection. Int J Mol Sci, 2021, 22: 5.

[24]

Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics, 2007, 23(10): 1289-1291.

[25]

Kosawang C, Karlsson M, Jensen DF, Dilokpimol A, Collinge DB. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin deoxynivalenol and zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea. BMC Genomics, 2014, 15: 55.

[26]

Kosawang C, Karlsson M, Vélëz H, Rasmussen PH, Collinge DB, Jensen B, Jensen DF. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum. Fungal Biol, 2014, 118(4): 364-373.

[27]

Legrand F, Picot A, Cobo-Díaz JF, Chen W, Le Floch G. Challenges facing the biological control strategies for the management of fusarium head blight of cereals caused by F. graminearum. Biol Control, 2017, 113: 26-38.

[28]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.

[29]

Moreno-Ruiz D, Salzmann L, Fricker MD, Zeilinger S, Lichius A. Stress-activated protein kinase signalling regulates mycoparasitic hyphal-hyphal interactions in Trichoderma atroviride. J Fungi, 2021, 7: 365.

[30]

Naranjo-Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Biol Proc Camb Philos Soc, 2019, 94(4): 1443-1476.

[31]

Nygren K, Dubey M, Zapparata A, Iqbal M, Tzelepis GD, Durling MB, Jensen DF, Karlsson M. The mycoparasitic fungus Clonostachys rosea responds with both common and specific gene expression during interspecific interactions with fungal prey. Evol Appl, 2018, 11(6): 931-949.

[32]

Okuda M, Ikeda K, Namiki F, Nishi K, Tsuge T. Tfo1: an Ac -like transposon from the plant pathogenic fungus Fusarium oxysporum. Mol Gen Genet, 1998, 258: 599-607.

[33]

Omero C, Inbar J, Rocha-Ramirez V, Herrera-Estrella A, Chet I, Horwitz BA. G protein activators and cAMP promote mycoparasitic behaviour in Trichoderma harzianum. Mycol Res, 1999, 103(12): 1637-1642.

[34]

Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 2011, 8(10): 785-786.

[35]

Powell AJ, Vujanovic V. Evolution of fusarium head blight management in wheat: scientific perspectives on biological control agents and crop genotypes protocooperation. Appl Sci, 2021, 11: 8960.

[36]

Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I, Doerks T, Jensen LJ, von Mering C, Bork P. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res, 2011, 40(1): D284-D289.

[37]

Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol, 2007, 44(11): 1123-1133.

[38]

Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A. Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol, 2011, 77(13): 4361-4370.

[39]

Schroers H-J, Samuels G, Seifert KA, Gams W (1999) Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia 91(2):365–385. https://www.jstor.org/stable/3761383

[40]

Schwartz S, Motorin Y. Next-generation sequencing technologies for detection of modified nucleotides in RNAs. RNA Biol, 2017, 14(9): 1124-1137.

[41]

Shentu X-P, Liu W-P, Zhan X-H, Xu Y-P, Xu J-F, Yu X-P, Zhang C-X. Transcriptome sequencing and gene expression analysis of Trichoderma brevicompactum under different culture conditions. PLoS ONE, 2014, 9(4

[42]

Spanic V, Katanic Z, Sulyok M, Krska R, Puskas K, Vida G, Drezner G, Šarkanj B. Multiple fungal metabolites including mycotoxins in naturally infected and Fusarium-inoculated wheat samples. Microorganisms, 2020, 8(4): 578.

[43]

Sun ZB, Sun MH, Li SD. Identification of mycoparasitism-related genes in Clonostachys rosea 67–1 active against Sclerotinia sclerotiorum. Sci Rep, 2015, 5: 18169.

[44]

Sun ZB, Wang Q, Sun MH, Li SD. The mitogen-activated protein kinase gene Crmapk is involved in Clonostachys chloroleuca mycoparasitism. Mol Plant Microbe Interact, 2020, 33(7): 902-910.

[45]

Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res, 2000, 28(1): 33-36.

[46]

Thrane C, Tronsmo A, Jensen DF. Endo-1,3-β-glucanase and cellulase from Trichoderma harzianum: purification and partial characterization, induction of and biological activity against plant pathogenic Pythium spp. Eur J Plant Pathol, 1997, 103(4): 331-344.

[47]

Trivedi P, Schenk PM, Wallenstein MD, Singh BK. Tiny microbes, big yields: enhancing food crop production with biological solutions. Microb Biotechnol, 2017, 10(5): 999-1003.

[48]

Tsang C-C, Teng JLL, Lau SKP, Woo PCY. Rapid genomic diagnosis of fungal infections in the age of next-generation sequencing. J Fungi, 2021, 7: 636.

[49]

Tzelepis G, Dubey M, Jensen DF, Karlsson M. Identifying glycoside hydrolase family 18 genes in the mycoparasitic fungal species Clonostachys rosea. Microbiology, 2015, 161(7): 1407-1419.

[50]

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3–new capabilities and interfaces. Nucleic Acids Res, 2012, 40(15

[51]

Víglaš J, Olejníková P. An update on ABC transporters of filamentous fungi—from physiological substrates to xenobiotics. Microbiol Res, 2021, 246.

[52]

Vujanovic V. Tremellomycetes yeasts in kernel ecological niche: early indicators of enhanced competitiveness of endophytic and mycoparasitic symbionts against wheat pathobiota. Plants, 2021, 10(5): 905.

[53]

Vujanovic V, Chau HW. Monitoring Fusarium complex mycelia replacement by mycopathogenic Sphaerodes using alcohol percentage test, qRT-PCR and HPLC. Physiol Mol Plant Pathol, 2012, 80: 28-34.

[54]

Vujanovic V, Goh YK. Sphaerodes mycoparasitica sp. nov., a new biotrophic mycoparasite on Fusarium avenaceum, F. graminearum and F. oxysporum. Mycol Res, 2009, 113: 1172-1180.

[55]

Vujanovic V, Goh YK. Sphaerodes mycoparasites and new Fusarium hosts for S. mycoparasitica. Mycotaxon, 2010, 114(1): 179-191.

[56]

Vujanovic V, Goh YK. Sphaerodes mycoparasitica biotrophic mycoparasite of 3-acetyldeoxynivalenol- and 15-acetyldeoxynivalenol-producing toxigenic Fusarium graminearum chemotypes. FEMS Microbiol Lett, 2011, 316(2): 136-143.

[57]

Vujanovic V, Kim SH. Adaptability of mitosporic stage in Sphaerodes mycoparasitica towards its mycoparasitic-polyphagous lifestyle. Mycologia, 2018, 109(5): 701-709.

[58]

Vujanovic V, Goh YK, Daida P. Heat- and cold-shock responses in Fusarium graminearum 3 acetyl- and 15 acetyl-deoxynivalenol chemotypes. J Microbiol, 2012, 50(1): 97-102.

[59]

Vujanovic V, Daida MA, Daida P. qPCR assessment of aurofusarin gene expression in mycotoxigenic Fusarium species challenged with mycoparasitic and chemical control agents. Biol Control, 2017, 109: 51-57.

[60]

Xiao M, Zhang Y, Chen X, Lee E-J, Barber CJS, Chakrabarty R, Desgagné-Penix I, Haslam TM, Kim Y-B, Liu E, MacNevin G, Masada-Atsumi S, Reed DW, Stout JM, Zerbe P, Zhang Y, Bohlmann J, Covello PS, De Luca V, Page JE, Ro D-K, Martin VJJ, Facchini PJ, Sensen CW. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol, 2013, 166(3): 122-134.

[61]

Xu Y-H, Jia K-Z, Tang Y-J. Regulatory networks governing methionine catabolism into volatile organic sulfur-containing compounds in Clonostachys rosea. Appl Environ Microbiol, 2018, 84(22): e01840-e1918.

[62]

Yang P. The gene task1 is involved in morphological development, mycoparasitism and antibiosis of Trichoderma asperellum. Biocontrol Sci Technol, 2017, 27(5): 620-635.

[63]

Zeilinger S, Reithner B, Scala V, Peissl I, Lorito M, Mach RL. Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl Environ Microbiol, 2005, 71(3): 1591-1597.

[64]

Zhao H, Zhou T, Xie J, Cheng J, Chen T, Jiang D, Fu Y. Mycoparasitism illuminated by genome and transcriptome sequencing of Coniothyrium minitans, an important biocontrol fungus of the plant pathogen Sclerotinia sclerotiorum. Microb Genom, 2020, 6(3

[65]

Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W. Comparative analysis of single-cell RNA sequencing methods. Mol Cell, 2017, 65(4): 631-643.e4.

Funding

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada(RGPIN-2017-05286)

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/