Characterization of Argonaute nucleases from mesophilic bacteria Paenibacillus borealis and Brevibacillus laterosporus

Huarong Dong , Fei Huang , Xiang Guo , Xiaoyi Xu , Qian Liu , Xiao Li , Yan Feng

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 133

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 133 DOI: 10.1186/s40643-021-00478-z
Research

Characterization of Argonaute nucleases from mesophilic bacteria Paenibacillus borealis and Brevibacillus laterosporus

Author information +
History +
PDF

Abstract

Thermophilic Argonaute proteins (Agos) have been shown to utilize small DNA guides for cleaving complementary DNA in vitro, which shows great potential for nucleic acid detection. In this study, we explored mesophilic Agos for the detection of small molecule by cooperating with allosteric transcription factors (aTFs). Two Agos from mesophilic bacteria, Paenibacillus borealis (PbAgo) and Brevibacillus laterosporus (BlAgo), showed nuclease activity for single-stranded DNA at moderate temperatures (37 °C) by using 5′-phosphorylated and 5′-hydroxylated DNA guides. Both Agos perform programmable cleavage of double-stranded DNA, especially in AT-rich regions of plasmid. Furthermore, we developed a simple and low-cost p-hydroxybenzoic acid detection method based on DNA-guided DNA cleavage of Agos and the allosteric effect of HosA, which expands the potential application of small molecule detection by Agos.

Keywords

Mesophilic Argonaute protein / Endonuclease / DNA cleavage / Allosteric transcription factors / Detection of small molecule

Cite this article

Download citation ▾
Huarong Dong, Fei Huang, Xiang Guo, Xiaoyi Xu, Qian Liu, Xiao Li, Yan Feng. Characterization of Argonaute nucleases from mesophilic bacteria Paenibacillus borealis and Brevibacillus laterosporus. Bioresources and Bioprocessing, 2021, 8(1): 133 DOI:10.1186/s40643-021-00478-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao J, Yao Y, Fan K, Tan G, Xiang W, Xia X, Li S, Wang W, Zhang L. Harnessing a previously unidentified capability of bacterial allosteric transcription factors for sensing diverse small molecules in vitro. Sci Adv, 2018, 4(11): 4602.

[2]

Cao Y, Sun W, Wang J, Sheng G, Xiang G, Zhang T, Shi W, Li C, Wang Y, Zhao F, Wang H. Argonaute proteins from human gastrointestinal bacteria catalyze DNA-guided cleavage of single- and double-stranded DNA at 37 degrees C. Cell Discov, 2019, 5: 38.

[3]

Enghiad B, Zhao H. Programmable DNA-guided artificial restriction enzymes. ACS Synth Biol, 2017, 6(5): 752-757.

[4]

Hegge JW, Swarts DC, van der Oost J. Prokaryotic Argonaute proteins: novel genome-editing tools?. Nat Rev Microbiol, 2018, 16(1): 5-11.

[5]

Hegge JW, Swarts DC, Chandradoss SD, Cui TJ, Kneppers J, Jinek M, Joo C, van der Oost J. DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute. Nucleic Acids Res, 2019, 47(11): 5809-5821.

[6]

Hellman LM, Fried MG. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc, 2007, 2(8): 1849-1861.

[7]

Ji-Joon Song SKS, Hannon GJ, Joshua-Tor L. Crystal structure of argonaute and its implications for RISC slicer activity. Science, 2004, 305(5689): 1434-1437.

[8]

Jolly SM, Gainetdinov I, Jouravleva K, Zhang H, Strittmatter L, Bailey SM, Hendricks GM, Dhabaria A, Ueberheide B, Zamore PD. Thermus thermophilus Argonaute Functions in the Completion of DNA Replication. Cell, 2020, 182(6): 1545-1559.

[9]

Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA. A bacterial Argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci U S A, 2016, 113(15): 4057-4062.

[10]

Ketting RF. The many faces of RNAi. Dev Cell, 2011, 20(2): 148-161.

[11]

Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A. Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev, 2013, 42(22): 8733-8768.

[12]

Koonin EV. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biol Direct, 2017, 12(1): 5.

[13]

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33(7): 1870-1874.

[14]

Kuzmenko A, Yudin D, Ryazansky S, Kulbachinskiy A, Aravin AA. Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea. Nucleic Acids Res, 2019, 47(11): 5822-5836.

[15]

Kuzmenko A, Oguienko A, Esyunina D, Yudin D, Petrova M, Kudinova A, Maslova O, Ninova M, Ryazansky S, Leach D, Aravin AA, Kulbachinskiy A. DNA targeting and interference by a bacterial Argonaute nuclease. Nature, 2020, 587(7835): 632-637.

[16]

Li S, Zhou L, Yao Y, Fan K, Li Z, Zhang L, Wang W, Yang K. A platform for the development of novel biosensors by configuring allosteric transcription factor recognition with amplified luminescent proximity homogeneous assays. Chem Commun (camb), 2016, 53(1): 99-102.

[17]

Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP, Wang J. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res, 2018, 28(4): 491-493.

[18]

Liang M, Li Z, Wang W, Liu J, Liu L, Zhu G, Karthik L, Wang M, Wang KF, Wang Z, Yu J, Shuai Y, Yu J, Zhang L, Yang Z, Li C, Zhang Q, Shi T, Zhou L, Xie F, Dai H, Liu X, Zhang J, Liu G, Zhuo Y, Zhang B, Liu C, Li S, Xia X, Tong Y, Liu Y, Alterovitz G, Tan GY, Zhang LX. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun, 2019, 10(1): 3672.

[19]

Libis V, Delepine B, Faulon JL. Sensing new chemicals with bacterial transcription factors. Curr Opin Microbiol, 2016, 33: 105-112.

[20]

Lisitskaya L, Aravin AA, Kulbachinskiy A. DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins. Nat Commun, 2018, 9(1): 5165.

[21]

Liu Q, Guo X, Xun G, Li Z, Chong Y, Yang L, Wang H, Zhang F, Luo S, Cui L, Zhao P, Ye X, Xu H, Lu H, Li X, Deng Z, Li K, Feng Y. Argonaute integrated single-tube PCR system enables supersensitive detection of rare mutations. Nucleic Acids Res, 2021

[22]

Liu Y, Li W, Jiang X, Wang Y, Zhang Z, Liu Q, He R, Chen Q, Yang J, Wang L, Wang F, Ma L. A programmable omnipotent Argonaute nuclease from mesophilic bacteria Kurthia massiliensis. Nucleic Acids Res, 2021, 49(3): 1597-1608.

[23]

Makarova KS, Wolf YI, van der Oost J, Koonin EV. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct, 2009, 4: 29.

[24]

Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet, 2013, 14(7): 447-459.

[25]

Nowotny M, Gaidamakov SA, Crouch RJ, Yang W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell, 2005, 121(7): 1005-1016.

[26]

Olina A, Kuzmenko A, Ninova M, Aravin AA, Kulbachinskiy A, Esyunina D. Genome-wide DNA sampling by Ago nuclease from the cyanobacterium Synechococcus elongatus. RNA Biol, 2020, 17(5): 677-688.

[27]

Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell, 2013, 51(5): 594-605.

[28]

Parker JS, Parizotto EA, Wang M, Roe SM, Barford D. Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol Cell, 2009, 33(2): 204-214.

[29]

Peters L, Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell, 2007, 26(5): 611-623.

[30]

Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem, 2009, 284(27): 17897-17901.

[31]

Roy A, Ranjan A. HosA, a MarR family transcriptional regulator, represses nonoxidative hydroxyarylic acid decarboxylase operon and is modulated by 4-hydroxybenzoic acid. Biochemistry, 2016, 55(7): 1120-1134.

[32]

Ryazansky S, Kulbachinskiy A, Aravin AA. The Expanded Universe of Prokaryotic Argonaute Proteins. Mbio, 2018, 9(6): e01935.

[33]

Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci U S A, 2014, 111(2): 652-657.

[34]

Soni MG, Carabin IG, Burdock GA. Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol, 2005, 43(7): 985-1015.

[35]

Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJJ, van der Oost J. DNA-guided DNA interference by a prokaryotic Argonaute. Nature, 2014, 507(7491): 258-261.

[36]

Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol, 2014, 21(9): 743-753.

[37]

Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res, 2015, 43(10): 5120-5129.

[38]

Swarts DC, Szczepaniak M, Sheng G, Chandradoss SD, Zhu Y, Timmers EM, Zhang Y, Zhao H, Lou J, Wang Y, Joo C, van der Oost J. Autonomous generation and loading of DNA Guides by Bacterial Argonaute. Mol Cell, 2017, 65(6): 985-998.

[39]

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22(22): 4673-4680.

[40]

Wang Y, Juranek S, Li H, Sheng G, Wardle GS, Tuschl T, Patel DJ. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature, 2009, 461(7265): 754-761.

[41]

Willkomm S, Oellig CA, Zander A, Restle T, Keegan R, Grohmann D, Schneider S. Structural and mechanistic insights into an archaeal DNA-guided Argonaute protein. Nat Microbiol, 2017, 2: 17035.

[42]

Yao Y, Li S, Cao J, Liu W, Fan K, Xiang W, Yang K, Kong D, Wang W. Development of small molecule biosensors by coupling the recognition of the bacterial allosteric transcription factor with isothermal strand displacement amplification. Chem Commun (camb), 2018, 54(38): 4774-4777.

Funding

ministry of science and technology of the people's republic of china(2020YFA0907700)

national natural science foundation of china(31770078)

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/